Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360748368> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4360748368 abstract "You have accessJournal of UrologyCME1 Apr 2023MP04-10 MACHINE LEARNING PREDICTS METABOLIC BIOMARKERS OF RESPONSE TO ANTI-VEGF DRUG SUNITINIB IN CCRCC Katiana Vazquez-Rivera, X. Amy Xie, Stephen Reese, Ritesh Kotecha, Martin Voss, Robert Motzer, Wesley Tansey, Ari Hakimi, and Ed Reznik Katiana Vazquez-RiveraKatiana Vazquez-Rivera More articles by this author , X. Amy XieX. Amy Xie More articles by this author , Stephen ReeseStephen Reese More articles by this author , Ritesh KotechaRitesh Kotecha More articles by this author , Martin VossMartin Voss More articles by this author , Robert MotzerRobert Motzer More articles by this author , Wesley TanseyWesley Tansey More articles by this author , Ari HakimiAri Hakimi More articles by this author , and Ed ReznikEd Reznik More articles by this author View All Author Informationhttps://doi.org/10.1097/JU.0000000000003215.10AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Clear cell renal cell carcinoma (ccRCC) is a metabolic disease with multiple mutated genes involved in the regulation of cellular metabolic processes, however it remains unknown how ccRCC metabolites are associated with response to anti-VEGF or immunotherapy agents. Metabolomic signatures may serve as a biomarker of response or serve as future points of intervention for targeted agents. Thus, we sought to characterize metabolite signatures associated with response to anti-VEGF therapy in patients with ccRCC. METHODS: A machine learning algorithm called T-MIRTH (Transcriptomics-Metabolite Imputation via Rank-Transformation and Harmonization) was developed to identify key metabolites. In short, this algorithm imputes metabolite abundances from RNA sequencing data by modeling metabolite-RNA covariation across datasets with paired metabolomics and transcriptomics data. 262 well-predicted metabolites were used to test the association between imputed levels of individual metabolites by T-MIRTH and progression free survival (PFS) in 7 published sunitinib clinical trials in advanced ccRCC. Using a multivariable Cox proportional hazard model, metabolomic signatures were correlated with progression-free survival and regression results were aggregated using a random effects meta-analysis model. RESULTS: Our T-MIRTH algorithm was validated using 3 ccRCC datasets with paired metabolomics and transcriptomics data and we demonstrated that T-MIRTH can accurately predict metabolite levels using RNA sequencing data. We then demonstrated using the ccRCC TCGA that T-MIRTH predicted metabolic differences between both tumor/normal samples and high/low-stage samples. Our algorithm was able to identify 262 validated metabolites. The results from our meta-analysis across 7 clinical trial demonstrated 7 metabolites significantly associated with improved PFS in the sunitinib arm (FDR < 0.05). In particular, high levels of 1-methylimidazole acetate had improved PFS within the sunitinib arm across all trials. CONCLUSIONS: Using a novel algorithm, we identified 7 metabolites that were associated with improved PFS in patients treated with sunitinib across 7 clinical trials. These metabolites may serve as biomarkers of response and may also be important targets for future therapeutics. Source of Funding: N/A © 2023 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 209Issue Supplement 4April 2023Page: e37 Advertisement Copyright & Permissions© 2023 by American Urological Association Education and Research, Inc.MetricsAuthor Information Katiana Vazquez-Rivera More articles by this author X. Amy Xie More articles by this author Stephen Reese More articles by this author Ritesh Kotecha More articles by this author Martin Voss More articles by this author Robert Motzer More articles by this author Wesley Tansey More articles by this author Ari Hakimi More articles by this author Ed Reznik More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W4360748368 created "2023-03-24" @default.
- W4360748368 creator A5006383763 @default.
- W4360748368 creator A5019538697 @default.
- W4360748368 creator A5023007737 @default.
- W4360748368 creator A5044480181 @default.
- W4360748368 creator A5059063118 @default.
- W4360748368 creator A5068251577 @default.
- W4360748368 creator A5069194773 @default.
- W4360748368 creator A5081768872 @default.
- W4360748368 creator A5091859782 @default.
- W4360748368 date "2023-04-01" @default.
- W4360748368 modified "2023-10-17" @default.
- W4360748368 title "MP04-10 MACHINE LEARNING PREDICTS METABOLIC BIOMARKERS OF RESPONSE TO ANTI-VEGF DRUG SUNITINIB IN CCRCC" @default.
- W4360748368 doi "https://doi.org/10.1097/ju.0000000000003215.10" @default.
- W4360748368 hasPublicationYear "2023" @default.
- W4360748368 type Work @default.
- W4360748368 citedByCount "0" @default.
- W4360748368 crossrefType "journal-article" @default.
- W4360748368 hasAuthorship W4360748368A5006383763 @default.
- W4360748368 hasAuthorship W4360748368A5019538697 @default.
- W4360748368 hasAuthorship W4360748368A5023007737 @default.
- W4360748368 hasAuthorship W4360748368A5044480181 @default.
- W4360748368 hasAuthorship W4360748368A5059063118 @default.
- W4360748368 hasAuthorship W4360748368A5068251577 @default.
- W4360748368 hasAuthorship W4360748368A5069194773 @default.
- W4360748368 hasAuthorship W4360748368A5081768872 @default.
- W4360748368 hasAuthorship W4360748368A5091859782 @default.
- W4360748368 hasConcept C104317684 @default.
- W4360748368 hasConcept C126322002 @default.
- W4360748368 hasConcept C143998085 @default.
- W4360748368 hasConcept C150194340 @default.
- W4360748368 hasConcept C162317418 @default.
- W4360748368 hasConcept C170734499 @default.
- W4360748368 hasConcept C21565614 @default.
- W4360748368 hasConcept C2777472916 @default.
- W4360748368 hasConcept C2777477808 @default.
- W4360748368 hasConcept C2779490328 @default.
- W4360748368 hasConcept C2781197716 @default.
- W4360748368 hasConcept C2781278892 @default.
- W4360748368 hasConcept C502942594 @default.
- W4360748368 hasConcept C54355233 @default.
- W4360748368 hasConcept C60644358 @default.
- W4360748368 hasConcept C70721500 @default.
- W4360748368 hasConcept C71924100 @default.
- W4360748368 hasConcept C86803240 @default.
- W4360748368 hasConcept C98274493 @default.
- W4360748368 hasConceptScore W4360748368C104317684 @default.
- W4360748368 hasConceptScore W4360748368C126322002 @default.
- W4360748368 hasConceptScore W4360748368C143998085 @default.
- W4360748368 hasConceptScore W4360748368C150194340 @default.
- W4360748368 hasConceptScore W4360748368C162317418 @default.
- W4360748368 hasConceptScore W4360748368C170734499 @default.
- W4360748368 hasConceptScore W4360748368C21565614 @default.
- W4360748368 hasConceptScore W4360748368C2777472916 @default.
- W4360748368 hasConceptScore W4360748368C2777477808 @default.
- W4360748368 hasConceptScore W4360748368C2779490328 @default.
- W4360748368 hasConceptScore W4360748368C2781197716 @default.
- W4360748368 hasConceptScore W4360748368C2781278892 @default.
- W4360748368 hasConceptScore W4360748368C502942594 @default.
- W4360748368 hasConceptScore W4360748368C54355233 @default.
- W4360748368 hasConceptScore W4360748368C60644358 @default.
- W4360748368 hasConceptScore W4360748368C70721500 @default.
- W4360748368 hasConceptScore W4360748368C71924100 @default.
- W4360748368 hasConceptScore W4360748368C86803240 @default.
- W4360748368 hasConceptScore W4360748368C98274493 @default.
- W4360748368 hasIssue "Supplement 4" @default.
- W4360748368 hasLocation W43607483681 @default.
- W4360748368 hasOpenAccess W4360748368 @default.
- W4360748368 hasPrimaryLocation W43607483681 @default.
- W4360748368 hasRelatedWork W1983793050 @default.
- W4360748368 hasRelatedWork W2551353941 @default.
- W4360748368 hasRelatedWork W2971185549 @default.
- W4360748368 hasRelatedWork W2977940498 @default.
- W4360748368 hasRelatedWork W2999981743 @default.
- W4360748368 hasRelatedWork W4361931285 @default.
- W4360748368 hasRelatedWork W4361931515 @default.
- W4360748368 hasRelatedWork W4361931850 @default.
- W4360748368 hasRelatedWork W4361931941 @default.
- W4360748368 hasRelatedWork W4366742470 @default.
- W4360748368 hasVolume "209" @default.
- W4360748368 isParatext "false" @default.
- W4360748368 isRetracted "false" @default.
- W4360748368 workType "article" @default.