Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764209> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4360764209 abstract "Glaucoma is an eye contamination that began because of the top intraocular strain within it and triggered total visual deficiency at its high-level stage. While ideal Treatment based on glaucoma screening can prevent occurrences where the patient loses all vision. Exact screening techniques depend on human experts' willingness to perform the manual evaluation of retinal guides in order to identify the areas affected by glaucoma. Be that as it may, because of perplexing glaucoma screening methods and deficiency of HR, we frequently face postpones which can expand the vision misfortune proportion all over the planet. Glaucoma is the driving reason for irreversible visual impairment with the number of inhabitants in Africa and Asia positioning the most elevated over the pace of glaucoma-impacted districts all over the planet. The imperfection will harm the eyes irreversibly by influencing the optic cup and optic circle of an eye. The early location of glaucoma is an undeniable need in the clinical field. The generally utilized strategy to identify glaucoma is an intrusive strategy that might prompt different impacts on the eye. This reason prompted the presentation of a harmless technique that follows picture handling for the location of glaucoma. Retinal picture-based recognition is the most effective way to pick as it goes under painless techniques for location. Discovery of glaucoma utilizing retinal pictures requires different clinical highlights of the eyes like optic cup measurement, optic plate distance across, and optic cup-to-circle proportion utilized Glaucoma sickness location from retinal pictures upholds convolutional brain organizations (CNN). The literary highlights acquired from retinal pictures such as the optic cup to optic circle measures are utilized for this arrangement. Convolutional Neural Networks utilize little pre-handling strategies that can be carried out generally simply contrasted with other picture order strategies. The execution of this undertaking follows the customary CNN design, applying channel layers, for example, the Convolution layer and Pooling layer, and furthermore enactment capacities, for example, Re Lu work and sigmoid capacity to pre-process as well as to refresh loads separately on the secret layers of the CNN followed by ordering the picture." @default.
- W4360764209 created "2023-03-25" @default.
- W4360764209 creator A5007033250 @default.
- W4360764209 creator A5015460021 @default.
- W4360764209 creator A5017514624 @default.
- W4360764209 creator A5045768640 @default.
- W4360764209 date "2022-12-14" @default.
- W4360764209 modified "2023-10-16" @default.
- W4360764209 title "Deep Learning-Based Automatic Glaucoma Assessment Using Fundus Images" @default.
- W4360764209 cites W2172410134 @default.
- W4360764209 cites W2954262208 @default.
- W4360764209 cites W2980199471 @default.
- W4360764209 cites W3025093592 @default.
- W4360764209 cites W3108542203 @default.
- W4360764209 cites W3120990989 @default.
- W4360764209 cites W3202088472 @default.
- W4360764209 cites W4206750494 @default.
- W4360764209 doi "https://doi.org/10.1109/iccpc55978.2022.10072152" @default.
- W4360764209 hasPublicationYear "2022" @default.
- W4360764209 type Work @default.
- W4360764209 citedByCount "0" @default.
- W4360764209 crossrefType "proceedings-article" @default.
- W4360764209 hasAuthorship W4360764209A5007033250 @default.
- W4360764209 hasAuthorship W4360764209A5015460021 @default.
- W4360764209 hasAuthorship W4360764209A5017514624 @default.
- W4360764209 hasAuthorship W4360764209A5045768640 @default.
- W4360764209 hasConcept C118487528 @default.
- W4360764209 hasConcept C119767625 @default.
- W4360764209 hasConcept C12713177 @default.
- W4360764209 hasConcept C154945302 @default.
- W4360764209 hasConcept C2776058522 @default.
- W4360764209 hasConcept C2776391266 @default.
- W4360764209 hasConcept C2778527774 @default.
- W4360764209 hasConcept C2778767146 @default.
- W4360764209 hasConcept C2779735895 @default.
- W4360764209 hasConcept C2780837183 @default.
- W4360764209 hasConcept C41008148 @default.
- W4360764209 hasConcept C71924100 @default.
- W4360764209 hasConceptScore W4360764209C118487528 @default.
- W4360764209 hasConceptScore W4360764209C119767625 @default.
- W4360764209 hasConceptScore W4360764209C12713177 @default.
- W4360764209 hasConceptScore W4360764209C154945302 @default.
- W4360764209 hasConceptScore W4360764209C2776058522 @default.
- W4360764209 hasConceptScore W4360764209C2776391266 @default.
- W4360764209 hasConceptScore W4360764209C2778527774 @default.
- W4360764209 hasConceptScore W4360764209C2778767146 @default.
- W4360764209 hasConceptScore W4360764209C2779735895 @default.
- W4360764209 hasConceptScore W4360764209C2780837183 @default.
- W4360764209 hasConceptScore W4360764209C41008148 @default.
- W4360764209 hasConceptScore W4360764209C71924100 @default.
- W4360764209 hasLocation W43607642091 @default.
- W4360764209 hasOpenAccess W4360764209 @default.
- W4360764209 hasPrimaryLocation W43607642091 @default.
- W4360764209 hasRelatedWork W164309747 @default.
- W4360764209 hasRelatedWork W1963810176 @default.
- W4360764209 hasRelatedWork W1976730307 @default.
- W4360764209 hasRelatedWork W1983630106 @default.
- W4360764209 hasRelatedWork W2002113659 @default.
- W4360764209 hasRelatedWork W2017696393 @default.
- W4360764209 hasRelatedWork W2058497552 @default.
- W4360764209 hasRelatedWork W2108367025 @default.
- W4360764209 hasRelatedWork W2119707723 @default.
- W4360764209 hasRelatedWork W2389447351 @default.
- W4360764209 isParatext "false" @default.
- W4360764209 isRetracted "false" @default.
- W4360764209 workType "article" @default.