Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764295> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4360764295 abstract "Tar spot disease is a fungal disease that appears as a series of black circular spots containing spores on corn leaves. Tar spot has proven to be an impactful disease in terms of reducing crop yield. To quantify disease progression, experts usually have to visually phenotype leaves from the plant. This process is very time-consuming and difficult to incorporate into any high-throughput phenotyping system. Deep neural networks could provide quick, automated tar spot detection with sufficient ground truth. However, manually labeling tar spots in images to serve as ground truth is also tedious and time-consuming. In this paper we first describe an approach that uses automated image analysis tools to generate ground truth images that are then used for training a Mask R-CNN. We show that a Mask R-CNN can be used effectively to detect tar spots in close-up images of leaf surfaces. We additionally show that the Mask R-CNN can be used for in-field images of whole leaves to capture the number of tar spots and area of the leaf infected by the disease." @default.
- W4360764295 created "2023-03-25" @default.
- W4360764295 creator A5003529169 @default.
- W4360764295 creator A5011655558 @default.
- W4360764295 creator A5027566969 @default.
- W4360764295 creator A5085323232 @default.
- W4360764295 creator A5090899291 @default.
- W4360764295 date "2022-12-01" @default.
- W4360764295 modified "2023-09-26" @default.
- W4360764295 title "Leaf Tar Spot Detection Using RGB Images" @default.
- W4360764295 cites W1536680647 @default.
- W4360764295 cites W1968060974 @default.
- W4360764295 cites W2044575220 @default.
- W4360764295 cites W2064791418 @default.
- W4360764295 cites W2065746463 @default.
- W4360764295 cites W2069693699 @default.
- W4360764295 cites W2069797029 @default.
- W4360764295 cites W2086078916 @default.
- W4360764295 cites W2097880011 @default.
- W4360764295 cites W2102605133 @default.
- W4360764295 cites W2154741421 @default.
- W4360764295 cites W2158240273 @default.
- W4360764295 cites W2179352600 @default.
- W4360764295 cites W2884367402 @default.
- W4360764295 cites W2940522640 @default.
- W4360764295 cites W2963150697 @default.
- W4360764295 cites W3036326845 @default.
- W4360764295 cites W3179401075 @default.
- W4360764295 cites W3203460317 @default.
- W4360764295 cites W4233016643 @default.
- W4360764295 doi "https://doi.org/10.1109/icmla55696.2022.00018" @default.
- W4360764295 hasPublicationYear "2022" @default.
- W4360764295 type Work @default.
- W4360764295 citedByCount "0" @default.
- W4360764295 crossrefType "proceedings-article" @default.
- W4360764295 hasAuthorship W4360764295A5003529169 @default.
- W4360764295 hasAuthorship W4360764295A5011655558 @default.
- W4360764295 hasAuthorship W4360764295A5027566969 @default.
- W4360764295 hasAuthorship W4360764295A5085323232 @default.
- W4360764295 hasAuthorship W4360764295A5090899291 @default.
- W4360764295 hasConcept C111919701 @default.
- W4360764295 hasConcept C144027150 @default.
- W4360764295 hasConcept C146849305 @default.
- W4360764295 hasConcept C153180895 @default.
- W4360764295 hasConcept C154945302 @default.
- W4360764295 hasConcept C192643346 @default.
- W4360764295 hasConcept C199360897 @default.
- W4360764295 hasConcept C2781255879 @default.
- W4360764295 hasConcept C2993179017 @default.
- W4360764295 hasConcept C31972630 @default.
- W4360764295 hasConcept C41008148 @default.
- W4360764295 hasConcept C59822182 @default.
- W4360764295 hasConcept C82990744 @default.
- W4360764295 hasConcept C86803240 @default.
- W4360764295 hasConcept C98045186 @default.
- W4360764295 hasConceptScore W4360764295C111919701 @default.
- W4360764295 hasConceptScore W4360764295C144027150 @default.
- W4360764295 hasConceptScore W4360764295C146849305 @default.
- W4360764295 hasConceptScore W4360764295C153180895 @default.
- W4360764295 hasConceptScore W4360764295C154945302 @default.
- W4360764295 hasConceptScore W4360764295C192643346 @default.
- W4360764295 hasConceptScore W4360764295C199360897 @default.
- W4360764295 hasConceptScore W4360764295C2781255879 @default.
- W4360764295 hasConceptScore W4360764295C2993179017 @default.
- W4360764295 hasConceptScore W4360764295C31972630 @default.
- W4360764295 hasConceptScore W4360764295C41008148 @default.
- W4360764295 hasConceptScore W4360764295C59822182 @default.
- W4360764295 hasConceptScore W4360764295C82990744 @default.
- W4360764295 hasConceptScore W4360764295C86803240 @default.
- W4360764295 hasConceptScore W4360764295C98045186 @default.
- W4360764295 hasLocation W43607642951 @default.
- W4360764295 hasOpenAccess W4360764295 @default.
- W4360764295 hasPrimaryLocation W43607642951 @default.
- W4360764295 hasRelatedWork W2030712947 @default.
- W4360764295 hasRelatedWork W2056979260 @default.
- W4360764295 hasRelatedWork W2082701464 @default.
- W4360764295 hasRelatedWork W2111610923 @default.
- W4360764295 hasRelatedWork W2149672065 @default.
- W4360764295 hasRelatedWork W2243462516 @default.
- W4360764295 hasRelatedWork W2962723611 @default.
- W4360764295 hasRelatedWork W3004045746 @default.
- W4360764295 hasRelatedWork W3203974071 @default.
- W4360764295 hasRelatedWork W4286898970 @default.
- W4360764295 isParatext "false" @default.
- W4360764295 isRetracted "false" @default.
- W4360764295 workType "article" @default.