Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764518> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4360764518 abstract "The recent advances in genetics technologies have led to high-throughput characterized different biological molecules’ functionalities. The availability of heterogeneous omics sparked the challenge of integrating them for further analysis. This work incorporates the Isomap technique to embed multi-omic data into a convolutional neural network (CNN). The deep learning model fuses three omics data, which are gene expression, copy number alteration (CNA), and DNA methylation data, for breast cancer stage prediction. Isomap is utilized to convert the high-dimensional data into 2-dimensional maps. The gene similarity network (GSN) map is created based on gene expression data to preserve gene relationships. The values from three omics for each sample are used to color the GSN map based on the RGB system. The created GSN maps for all samples are fed into the CNN for classification.The model was applied to TCGA breast invasive carcinoma data set to predict the stage of breast cancer. It outperformed the state-of-art iSOM-GSN model in performance metrics, including accuracy, precision, recall, f1-measure, and area under the curve (AUC). The results indicate that a combination of Isomap embedding technique and CNN can successfully integrate a multi-omics data set for cancer outcome prediction, including the diagnosis and prognosis of the complex disease." @default.
- W4360764518 created "2023-03-25" @default.
- W4360764518 creator A5009739727 @default.
- W4360764518 creator A5015423824 @default.
- W4360764518 creator A5024476272 @default.
- W4360764518 creator A5027009015 @default.
- W4360764518 creator A5031221516 @default.
- W4360764518 creator A5054052432 @default.
- W4360764518 creator A5061737844 @default.
- W4360764518 date "2022-12-01" @default.
- W4360764518 modified "2023-09-26" @default.
- W4360764518 title "Multi-omics Data Integration Model based on Isomap and Convolutional Neural Network" @default.
- W4360764518 cites W1908864745 @default.
- W4360764518 cites W1975449922 @default.
- W4360764518 cites W1990517717 @default.
- W4360764518 cites W2001141328 @default.
- W4360764518 cites W2001289365 @default.
- W4360764518 cites W2005388951 @default.
- W4360764518 cites W2009720434 @default.
- W4360764518 cites W2097308346 @default.
- W4360764518 cites W2100438487 @default.
- W4360764518 cites W2624701078 @default.
- W4360764518 cites W2989634691 @default.
- W4360764518 cites W3005087874 @default.
- W4360764518 cites W3092803354 @default.
- W4360764518 cites W3216448540 @default.
- W4360764518 cites W4212958784 @default.
- W4360764518 cites W4300689006 @default.
- W4360764518 doi "https://doi.org/10.1109/icmla55696.2022.00218" @default.
- W4360764518 hasPublicationYear "2022" @default.
- W4360764518 type Work @default.
- W4360764518 citedByCount "0" @default.
- W4360764518 crossrefType "proceedings-article" @default.
- W4360764518 hasAuthorship W4360764518A5009739727 @default.
- W4360764518 hasAuthorship W4360764518A5015423824 @default.
- W4360764518 hasAuthorship W4360764518A5024476272 @default.
- W4360764518 hasAuthorship W4360764518A5027009015 @default.
- W4360764518 hasAuthorship W4360764518A5031221516 @default.
- W4360764518 hasAuthorship W4360764518A5054052432 @default.
- W4360764518 hasAuthorship W4360764518A5061737844 @default.
- W4360764518 hasConcept C108583219 @default.
- W4360764518 hasConcept C119857082 @default.
- W4360764518 hasConcept C124101348 @default.
- W4360764518 hasConcept C151876577 @default.
- W4360764518 hasConcept C153180895 @default.
- W4360764518 hasConcept C154945302 @default.
- W4360764518 hasConcept C2778626561 @default.
- W4360764518 hasConcept C41008148 @default.
- W4360764518 hasConcept C58489278 @default.
- W4360764518 hasConcept C70518039 @default.
- W4360764518 hasConcept C81363708 @default.
- W4360764518 hasConceptScore W4360764518C108583219 @default.
- W4360764518 hasConceptScore W4360764518C119857082 @default.
- W4360764518 hasConceptScore W4360764518C124101348 @default.
- W4360764518 hasConceptScore W4360764518C151876577 @default.
- W4360764518 hasConceptScore W4360764518C153180895 @default.
- W4360764518 hasConceptScore W4360764518C154945302 @default.
- W4360764518 hasConceptScore W4360764518C2778626561 @default.
- W4360764518 hasConceptScore W4360764518C41008148 @default.
- W4360764518 hasConceptScore W4360764518C58489278 @default.
- W4360764518 hasConceptScore W4360764518C70518039 @default.
- W4360764518 hasConceptScore W4360764518C81363708 @default.
- W4360764518 hasLocation W43607645181 @default.
- W4360764518 hasOpenAccess W4360764518 @default.
- W4360764518 hasPrimaryLocation W43607645181 @default.
- W4360764518 hasRelatedWork W2337926734 @default.
- W4360764518 hasRelatedWork W2732542196 @default.
- W4360764518 hasRelatedWork W2738221750 @default.
- W4360764518 hasRelatedWork W2997155179 @default.
- W4360764518 hasRelatedWork W3144574764 @default.
- W4360764518 hasRelatedWork W3156786002 @default.
- W4360764518 hasRelatedWork W4311257506 @default.
- W4360764518 hasRelatedWork W4320802194 @default.
- W4360764518 hasRelatedWork W4366224123 @default.
- W4360764518 hasRelatedWork W564581980 @default.
- W4360764518 isParatext "false" @default.
- W4360764518 isRetracted "false" @default.
- W4360764518 workType "article" @default.