Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764564> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4360764564 abstract "As the importance of intrusion detection and prevention systems (IDPSs) increases, great costs are being incurred to manually manage signatures, which are malicious communication pattern files. Network security experts need to classify signatures by importance for an IDPS to work optimally. In this study, we propose and evaluate a machine learning signature classification model with a reject option (RO) to reduce the cost of setting up an IDPS. Experts classify some signatures with predefined if-then rules. We first design two types of features, symbolic features (SFs) and keyword features (KFs), which are used in keyword matching for the if-then rules. Next, we design web information and message features (WMFs) to capture the properties of signatures that do not match the if-then rules. The WMFs are extracted as the term frequency-inverse document frequency (TF-IDF) features of the message text in each signature and the text expanded by web scraping, respectively. Because failures need to be minimized when classifying IDPS signatures, we consider introducing an RO in our proposed model. The effectiveness of the proposed classification model is evaluated in experiments conducted on two real datasets composed of signatures labeled by experts. In the experiment, the SF and WMF combination outperforms the SF and KF combination. We also show that using a deep ensemble improves the performance of the RO. An analysis shows that experts refer to the text contained in the signatures and information from the web." @default.
- W4360764564 created "2023-03-25" @default.
- W4360764564 creator A5045739010 @default.
- W4360764564 creator A5080920610 @default.
- W4360764564 creator A5086738578 @default.
- W4360764564 date "2022-12-01" @default.
- W4360764564 modified "2023-09-23" @default.
- W4360764564 title "IDPS Signature Classification with a Reject Option and the Incorporation of Expert Knowledge" @default.
- W4360764564 cites W1576154654 @default.
- W4360764564 cites W2091805711 @default.
- W4360764564 cites W2118377301 @default.
- W4360764564 cites W2132081438 @default.
- W4360764564 cites W2147947791 @default.
- W4360764564 cites W2148143831 @default.
- W4360764564 cites W2155926039 @default.
- W4360764564 cites W2783809651 @default.
- W4360764564 cites W2792023570 @default.
- W4360764564 cites W2793784469 @default.
- W4360764564 cites W2890222814 @default.
- W4360764564 cites W2947321331 @default.
- W4360764564 cites W2969284949 @default.
- W4360764564 cites W2977047872 @default.
- W4360764564 cites W3044369729 @default.
- W4360764564 cites W3107863284 @default.
- W4360764564 doi "https://doi.org/10.1109/icmla55696.2022.00096" @default.
- W4360764564 hasPublicationYear "2022" @default.
- W4360764564 type Work @default.
- W4360764564 citedByCount "0" @default.
- W4360764564 crossrefType "proceedings-article" @default.
- W4360764564 hasAuthorship W4360764564A5045739010 @default.
- W4360764564 hasAuthorship W4360764564A5080920610 @default.
- W4360764564 hasAuthorship W4360764564A5086738578 @default.
- W4360764564 hasBestOaLocation W43607645642 @default.
- W4360764564 hasConcept C105795698 @default.
- W4360764564 hasConcept C119857082 @default.
- W4360764564 hasConcept C124101348 @default.
- W4360764564 hasConcept C153180895 @default.
- W4360764564 hasConcept C154945302 @default.
- W4360764564 hasConcept C165064840 @default.
- W4360764564 hasConcept C23123220 @default.
- W4360764564 hasConcept C2524010 @default.
- W4360764564 hasConcept C26517878 @default.
- W4360764564 hasConcept C2779696439 @default.
- W4360764564 hasConcept C33923547 @default.
- W4360764564 hasConcept C35525427 @default.
- W4360764564 hasConcept C38652104 @default.
- W4360764564 hasConcept C41008148 @default.
- W4360764564 hasConceptScore W4360764564C105795698 @default.
- W4360764564 hasConceptScore W4360764564C119857082 @default.
- W4360764564 hasConceptScore W4360764564C124101348 @default.
- W4360764564 hasConceptScore W4360764564C153180895 @default.
- W4360764564 hasConceptScore W4360764564C154945302 @default.
- W4360764564 hasConceptScore W4360764564C165064840 @default.
- W4360764564 hasConceptScore W4360764564C23123220 @default.
- W4360764564 hasConceptScore W4360764564C2524010 @default.
- W4360764564 hasConceptScore W4360764564C26517878 @default.
- W4360764564 hasConceptScore W4360764564C2779696439 @default.
- W4360764564 hasConceptScore W4360764564C33923547 @default.
- W4360764564 hasConceptScore W4360764564C35525427 @default.
- W4360764564 hasConceptScore W4360764564C38652104 @default.
- W4360764564 hasConceptScore W4360764564C41008148 @default.
- W4360764564 hasLocation W43607645641 @default.
- W4360764564 hasLocation W43607645642 @default.
- W4360764564 hasOpenAccess W4360764564 @default.
- W4360764564 hasPrimaryLocation W43607645641 @default.
- W4360764564 hasRelatedWork W2019138074 @default.
- W4360764564 hasRelatedWork W2073296929 @default.
- W4360764564 hasRelatedWork W2102298087 @default.
- W4360764564 hasRelatedWork W2353844535 @default.
- W4360764564 hasRelatedWork W2364562957 @default.
- W4360764564 hasRelatedWork W2366221835 @default.
- W4360764564 hasRelatedWork W2584408238 @default.
- W4360764564 hasRelatedWork W4205568523 @default.
- W4360764564 hasRelatedWork W4285337355 @default.
- W4360764564 hasRelatedWork W4313029187 @default.
- W4360764564 isParatext "false" @default.
- W4360764564 isRetracted "false" @default.
- W4360764564 workType "article" @default.