Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764583> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4360764583 abstract "Timely detection of clinical events would provide healthcare providers the opportunity to make meaningful interventions that can result in improved health outcomes. This work describes a methodology developed at a large U.S. healthcare insurance company for predicting clinical events using administrative claims data. Most of the existing literature for predicting clinical events leverage historical data in Electronic Health Records (EHR). EHR data however has limitations making it undesirable for real-time use-cases. It is inconsistent, expensive, inefficient and sparsely available. In contrast, administrative claims data is relatively consistent, efficient and readily available. In this work, we introduce a novel modeling workflow: First, we learn custom embeddings for medical codes within claims data in order to uncover the hidden relationships between them. Second, we introduce a novel way of representing a member’s health history with a graph such that the relationships between various diagnosis and procedure codes is captured. Finally, we apply Graph Neural Networks (GNN) to perform a multi-label graph classification for clinical event prediction. Our approach produces more accurate predictions than any other standard classification approaches and can be easily generalized to other clinical prediction tasks." @default.
- W4360764583 created "2023-03-25" @default.
- W4360764583 creator A5029349687 @default.
- W4360764583 creator A5073404562 @default.
- W4360764583 date "2022-12-01" @default.
- W4360764583 modified "2023-10-16" @default.
- W4360764583 title "Predicting Clinical Events via Graph Neural Networks" @default.
- W4360764583 cites W1980867644 @default.
- W4360764583 cites W2016698763 @default.
- W4360764583 cites W2039409618 @default.
- W4360764583 cites W2096451472 @default.
- W4360764583 cites W2108627815 @default.
- W4360764583 cites W2114315281 @default.
- W4360764583 cites W2167775808 @default.
- W4360764583 cites W2404901863 @default.
- W4360764583 cites W2517194566 @default.
- W4360764583 cites W2742491462 @default.
- W4360764583 cites W2766585573 @default.
- W4360764583 cites W2910871591 @default.
- W4360764583 cites W2911489562 @default.
- W4360764583 cites W3036619032 @default.
- W4360764583 cites W3037254538 @default.
- W4360764583 cites W3099136959 @default.
- W4360764583 cites W3120118518 @default.
- W4360764583 doi "https://doi.org/10.1109/icmla55696.2022.00207" @default.
- W4360764583 hasPublicationYear "2022" @default.
- W4360764583 type Work @default.
- W4360764583 citedByCount "0" @default.
- W4360764583 crossrefType "proceedings-article" @default.
- W4360764583 hasAuthorship W4360764583A5029349687 @default.
- W4360764583 hasAuthorship W4360764583A5073404562 @default.
- W4360764583 hasConcept C119857082 @default.
- W4360764583 hasConcept C124101348 @default.
- W4360764583 hasConcept C132525143 @default.
- W4360764583 hasConcept C142724271 @default.
- W4360764583 hasConcept C153083717 @default.
- W4360764583 hasConcept C154874363 @default.
- W4360764583 hasConcept C154945302 @default.
- W4360764583 hasConcept C159110408 @default.
- W4360764583 hasConcept C160735492 @default.
- W4360764583 hasConcept C162324750 @default.
- W4360764583 hasConcept C177212765 @default.
- W4360764583 hasConcept C2522767166 @default.
- W4360764583 hasConcept C3019952477 @default.
- W4360764583 hasConcept C41008148 @default.
- W4360764583 hasConcept C50522688 @default.
- W4360764583 hasConcept C534262118 @default.
- W4360764583 hasConcept C71924100 @default.
- W4360764583 hasConcept C77088390 @default.
- W4360764583 hasConcept C80444323 @default.
- W4360764583 hasConceptScore W4360764583C119857082 @default.
- W4360764583 hasConceptScore W4360764583C124101348 @default.
- W4360764583 hasConceptScore W4360764583C132525143 @default.
- W4360764583 hasConceptScore W4360764583C142724271 @default.
- W4360764583 hasConceptScore W4360764583C153083717 @default.
- W4360764583 hasConceptScore W4360764583C154874363 @default.
- W4360764583 hasConceptScore W4360764583C154945302 @default.
- W4360764583 hasConceptScore W4360764583C159110408 @default.
- W4360764583 hasConceptScore W4360764583C160735492 @default.
- W4360764583 hasConceptScore W4360764583C162324750 @default.
- W4360764583 hasConceptScore W4360764583C177212765 @default.
- W4360764583 hasConceptScore W4360764583C2522767166 @default.
- W4360764583 hasConceptScore W4360764583C3019952477 @default.
- W4360764583 hasConceptScore W4360764583C41008148 @default.
- W4360764583 hasConceptScore W4360764583C50522688 @default.
- W4360764583 hasConceptScore W4360764583C534262118 @default.
- W4360764583 hasConceptScore W4360764583C71924100 @default.
- W4360764583 hasConceptScore W4360764583C77088390 @default.
- W4360764583 hasConceptScore W4360764583C80444323 @default.
- W4360764583 hasLocation W43607645831 @default.
- W4360764583 hasOpenAccess W4360764583 @default.
- W4360764583 hasPrimaryLocation W43607645831 @default.
- W4360764583 hasRelatedWork W2032211133 @default.
- W4360764583 hasRelatedWork W2227651989 @default.
- W4360764583 hasRelatedWork W2294086348 @default.
- W4360764583 hasRelatedWork W2533388555 @default.
- W4360764583 hasRelatedWork W2809195147 @default.
- W4360764583 hasRelatedWork W2981850339 @default.
- W4360764583 hasRelatedWork W2990740661 @default.
- W4360764583 hasRelatedWork W4210551435 @default.
- W4360764583 hasRelatedWork W4309637067 @default.
- W4360764583 hasRelatedWork W4316082230 @default.
- W4360764583 isParatext "false" @default.
- W4360764583 isRetracted "false" @default.
- W4360764583 workType "article" @default.