Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764650> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4360764650 abstract "Accurate biomass estimation is a major concern in the aquaculture industry due to its role in the efficient operations of fish farms. In this paper, we propose the application of machine learning and deep learning techniques on sound navigation and ranging (Sonar) readings of tanks to predict fish biomass under both clear and murky water conditions. While previous works have proposed similar approaches, they generally face two operational challenges. First, typical setups consider RGB or infrared cameras, which are strongly influenced by water conditions and limit their application, for RGB cameras the light penetration is severely affected by water turbidity, while infrared is strongly absorbed by water. Second, modern fish farming installations such as recirculating aquaculture systems (RAS) operate high-density or super high-density fish tanks, which introduce additional challenges such as noise in sensor readings and occlusions. Our method addresses these issues by (i) leveraging Sonar technology which is less susceptible to variations in water conditions and performs well under both clear and murky water(turbid water); and (ii) designing a custom loss function to reduce the effect of noise which can result in overestimation, and occlusions which can lead to the underestimation in the prediction of fish biomass. We achieve an overall root mean squared error (RMSE) of around 5 for both clear and murky water using both machine learning and deep learning approaches, which is a reasonable value for our dataset. The custom loss function with additional penalties and constraints improves the RMSE and R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> performance over our preliminary results. The assessment was performed on data collected in an actual operational environment, comprising minimally configured RAS tanks at Blue Aqua International, which is an aquaculture technology provider and a fish farm that intends to develop and commercialize a product for automated biomass estimation." @default.
- W4360764650 created "2023-03-25" @default.
- W4360764650 creator A5008348144 @default.
- W4360764650 creator A5045764207 @default.
- W4360764650 creator A5046568529 @default.
- W4360764650 creator A5064601933 @default.
- W4360764650 creator A5066612476 @default.
- W4360764650 creator A5075058250 @default.
- W4360764650 date "2022-12-01" @default.
- W4360764650 modified "2023-09-27" @default.
- W4360764650 title "Improving Aquaculture Systems using AI: Employing predictive models for Biomass Estimation on Sonar Images" @default.
- W4360764650 cites W1509489877 @default.
- W4360764650 cites W1565279258 @default.
- W4360764650 cites W1869003302 @default.
- W4360764650 cites W1979596289 @default.
- W4360764650 cites W2060005852 @default.
- W4360764650 cites W2065429801 @default.
- W4360764650 cites W2087852980 @default.
- W4360764650 cites W2148807037 @default.
- W4360764650 cites W2151103935 @default.
- W4360764650 cites W2162315348 @default.
- W4360764650 cites W2163897047 @default.
- W4360764650 cites W2545565655 @default.
- W4360764650 cites W2620256520 @default.
- W4360764650 cites W2765725578 @default.
- W4360764650 cites W2806315586 @default.
- W4360764650 cites W2977808367 @default.
- W4360764650 cites W3006700002 @default.
- W4360764650 cites W3016377608 @default.
- W4360764650 doi "https://doi.org/10.1109/icmla55696.2022.00250" @default.
- W4360764650 hasPublicationYear "2022" @default.
- W4360764650 type Work @default.
- W4360764650 citedByCount "0" @default.
- W4360764650 crossrefType "proceedings-article" @default.
- W4360764650 hasAuthorship W4360764650A5008348144 @default.
- W4360764650 hasAuthorship W4360764650A5045764207 @default.
- W4360764650 hasAuthorship W4360764650A5046568529 @default.
- W4360764650 hasAuthorship W4360764650A5064601933 @default.
- W4360764650 hasAuthorship W4360764650A5066612476 @default.
- W4360764650 hasAuthorship W4360764650A5075058250 @default.
- W4360764650 hasConcept C105795698 @default.
- W4360764650 hasConcept C111368507 @default.
- W4360764650 hasConcept C115540264 @default.
- W4360764650 hasConcept C115961682 @default.
- W4360764650 hasConcept C119857082 @default.
- W4360764650 hasConcept C127313418 @default.
- W4360764650 hasConcept C139945424 @default.
- W4360764650 hasConcept C154945302 @default.
- W4360764650 hasConcept C2909208804 @default.
- W4360764650 hasConcept C33923547 @default.
- W4360764650 hasConcept C39432304 @default.
- W4360764650 hasConcept C41008148 @default.
- W4360764650 hasConcept C505870484 @default.
- W4360764650 hasConcept C555745239 @default.
- W4360764650 hasConcept C62649853 @default.
- W4360764650 hasConcept C82990744 @default.
- W4360764650 hasConcept C86803240 @default.
- W4360764650 hasConcept C86909935 @default.
- W4360764650 hasConcept C99498987 @default.
- W4360764650 hasConceptScore W4360764650C105795698 @default.
- W4360764650 hasConceptScore W4360764650C111368507 @default.
- W4360764650 hasConceptScore W4360764650C115540264 @default.
- W4360764650 hasConceptScore W4360764650C115961682 @default.
- W4360764650 hasConceptScore W4360764650C119857082 @default.
- W4360764650 hasConceptScore W4360764650C127313418 @default.
- W4360764650 hasConceptScore W4360764650C139945424 @default.
- W4360764650 hasConceptScore W4360764650C154945302 @default.
- W4360764650 hasConceptScore W4360764650C2909208804 @default.
- W4360764650 hasConceptScore W4360764650C33923547 @default.
- W4360764650 hasConceptScore W4360764650C39432304 @default.
- W4360764650 hasConceptScore W4360764650C41008148 @default.
- W4360764650 hasConceptScore W4360764650C505870484 @default.
- W4360764650 hasConceptScore W4360764650C555745239 @default.
- W4360764650 hasConceptScore W4360764650C62649853 @default.
- W4360764650 hasConceptScore W4360764650C82990744 @default.
- W4360764650 hasConceptScore W4360764650C86803240 @default.
- W4360764650 hasConceptScore W4360764650C86909935 @default.
- W4360764650 hasConceptScore W4360764650C99498987 @default.
- W4360764650 hasLocation W43607646501 @default.
- W4360764650 hasOpenAccess W4360764650 @default.
- W4360764650 hasPrimaryLocation W43607646501 @default.
- W4360764650 hasRelatedWork W2096344081 @default.
- W4360764650 hasRelatedWork W2899084033 @default.
- W4360764650 hasRelatedWork W2961085424 @default.
- W4360764650 hasRelatedWork W2995227436 @default.
- W4360764650 hasRelatedWork W3116272949 @default.
- W4360764650 hasRelatedWork W4224286665 @default.
- W4360764650 hasRelatedWork W4301343772 @default.
- W4360764650 hasRelatedWork W4306674287 @default.
- W4360764650 hasRelatedWork W4360764650 @default.
- W4360764650 hasRelatedWork W4224009465 @default.
- W4360764650 isParatext "false" @default.
- W4360764650 isRetracted "false" @default.
- W4360764650 workType "article" @default.