Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360764651> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4360764651 abstract "In many scenarios like wireless Internet access or encrypted VPN tunnels, encryption is performed on a per-packet basis. While this encryption approach effectively protects the confidentiality of the transmitted payload, it leaves traffic patterns involving inter-arrival times and packet lengths observable, e.g., to eavesdroppers on the air interface. It is a widespread belief that by only observing interleaved packets of different parallel flows, analysis and classification of the corresponding traffic by an eavesdropper is very difficult or close to impossible.In this paper, we show that it is indeed possible to separate packets belonging to different flows purely from patterns observed in the interleaved packet sequence. We devise a novel deep recurrent neural network architecture that allows us to detect individual anomalous packets in a flow. Based on this anomaly detector, we develop an algorithm to find a separation into flows that minimizes the anomaly score indicated by our model. Our experimental results obtained with synthetically crafted flows and real-world network traces indicate that our approach is indeed able to separate flows successfully with high accuracy.Being able to recover a flow's packet sequence from multiple interleaved flows, we show with this paper that the common packet-level encryption might be insufficient in scenarios where high levels of privacy have to be achieved. On the defender's side, our approach constitutes a valuable tool in encrypted traffic analysis, but also contributes a novel neural network architecture in the field of network intrusion detection in general." @default.
- W4360764651 created "2023-03-25" @default.
- W4360764651 creator A5015779165 @default.
- W4360764651 creator A5018072983 @default.
- W4360764651 creator A5072465858 @default.
- W4360764651 date "2022-12-01" @default.
- W4360764651 modified "2023-09-27" @default.
- W4360764651 title "Separating Flows in Encrypted Tunnel Traffic" @default.
- W4360764651 cites W1242748811 @default.
- W4360764651 cites W2030960331 @default.
- W4360764651 cites W2158215699 @default.
- W4360764651 cites W2170916850 @default.
- W4360764651 cites W2179036394 @default.
- W4360764651 cites W2257936664 @default.
- W4360764651 cites W2612102454 @default.
- W4360764651 cites W2613715541 @default.
- W4360764651 cites W2789828921 @default.
- W4360764651 cites W2897202622 @default.
- W4360764651 cites W2982964638 @default.
- W4360764651 cites W2996623839 @default.
- W4360764651 cites W3017943350 @default.
- W4360764651 cites W3025003062 @default.
- W4360764651 cites W3089115757 @default.
- W4360764651 cites W4206366499 @default.
- W4360764651 cites W4235169531 @default.
- W4360764651 doi "https://doi.org/10.1109/icmla55696.2022.00094" @default.
- W4360764651 hasPublicationYear "2022" @default.
- W4360764651 type Work @default.
- W4360764651 citedByCount "0" @default.
- W4360764651 crossrefType "proceedings-article" @default.
- W4360764651 hasAuthorship W4360764651A5015779165 @default.
- W4360764651 hasAuthorship W4360764651A5018072983 @default.
- W4360764651 hasAuthorship W4360764651A5072465858 @default.
- W4360764651 hasConcept C124101348 @default.
- W4360764651 hasConcept C134066672 @default.
- W4360764651 hasConcept C148730421 @default.
- W4360764651 hasConcept C158379750 @default.
- W4360764651 hasConcept C204679922 @default.
- W4360764651 hasConcept C31258907 @default.
- W4360764651 hasConcept C35525427 @default.
- W4360764651 hasConcept C41008148 @default.
- W4360764651 hasConcept C739882 @default.
- W4360764651 hasConcept C79403827 @default.
- W4360764651 hasConceptScore W4360764651C124101348 @default.
- W4360764651 hasConceptScore W4360764651C134066672 @default.
- W4360764651 hasConceptScore W4360764651C148730421 @default.
- W4360764651 hasConceptScore W4360764651C158379750 @default.
- W4360764651 hasConceptScore W4360764651C204679922 @default.
- W4360764651 hasConceptScore W4360764651C31258907 @default.
- W4360764651 hasConceptScore W4360764651C35525427 @default.
- W4360764651 hasConceptScore W4360764651C41008148 @default.
- W4360764651 hasConceptScore W4360764651C739882 @default.
- W4360764651 hasConceptScore W4360764651C79403827 @default.
- W4360764651 hasLocation W43607646511 @default.
- W4360764651 hasOpenAccess W4360764651 @default.
- W4360764651 hasPrimaryLocation W43607646511 @default.
- W4360764651 hasRelatedWork W1971040605 @default.
- W4360764651 hasRelatedWork W2110890874 @default.
- W4360764651 hasRelatedWork W2127765276 @default.
- W4360764651 hasRelatedWork W2344226372 @default.
- W4360764651 hasRelatedWork W2593889512 @default.
- W4360764651 hasRelatedWork W3160314615 @default.
- W4360764651 hasRelatedWork W3169092194 @default.
- W4360764651 hasRelatedWork W4205559658 @default.
- W4360764651 hasRelatedWork W4250738563 @default.
- W4360764651 hasRelatedWork W1572387226 @default.
- W4360764651 isParatext "false" @default.
- W4360764651 isRetracted "false" @default.
- W4360764651 workType "article" @default.