Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360821288> ?p ?o ?g. }
- W4360821288 endingPage "100786" @default.
- W4360821288 startingPage "100786" @default.
- W4360821288 abstract "Animal welfare standards are used within the food industry to demonstrate efforts in reaching higher welfare on farms. To verify compliance with those standards, inspectors conduct regular on-farm animal welfare assessments. Conducting these welfare assessments can, however, be time-consuming and prone to human bias. The emergence of Digital Livestock Technologies (DLTs) offers new ways of monitoring farm animal welfare and can alleviate some of the challenges related to animal welfare assessments by collecting data automatically and more frequently. Whilst automating welfare assessments with DLTs may be promising, little attention has been paid to farmers’ perceptions of the challenges that could prevent successful implementation. This study aims to address this gap by focusing on the trial of a DLT (a 3D machinelearning camera) to automate mobility and body condition scoring on 11 dairy cattle farms. Semi-structured, in-depth interviews were conducted with farmers, technology developers and a stakeholder involved in a farm assurance scheme (N14). Findings suggest that stakeholders perceived important benefits to the use of the camera in this context, from building consumer trust by increasing transparency to improved management efficiency. There was also a potential for greater consistency in data collection and thus for enhanced fairness across the UK dairy sector, particularly on the issue of lameness prevalence. However, stakeholders also raised important concerns, such as a lack of clarity around data ownership, reliability, and use, and the possibility of some farmers being penalised (e.g., if the technology failed to work). More clarity should thus be given to farmers in relation to data governance and evidence provided in terms of technical performance and accuracy. The findings of this study highlighted the need for more inclusive approaches to ensure farmers’ concerns are adequately identified and addressed. These approaches can help minimise negative consequences to farmers and animal welfare, whilst maximising the potential benefits of automating welfare-related data collection." @default.
- W4360821288 created "2023-03-25" @default.
- W4360821288 creator A5001649348 @default.
- W4360821288 creator A5051309466 @default.
- W4360821288 creator A5077710101 @default.
- W4360821288 date "2023-05-01" @default.
- W4360821288 modified "2023-09-30" @default.
- W4360821288 title "Perceptions of farming stakeholders towards automating dairy cattle mobility and body condition scoring in farm assurance schemes" @default.
- W4360821288 cites W1940729789 @default.
- W4360821288 cites W1969079007 @default.
- W4360821288 cites W1979290264 @default.
- W4360821288 cites W1996133609 @default.
- W4360821288 cites W2024055184 @default.
- W4360821288 cites W2063719555 @default.
- W4360821288 cites W2067341857 @default.
- W4360821288 cites W2081213175 @default.
- W4360821288 cites W2090851524 @default.
- W4360821288 cites W2148137175 @default.
- W4360821288 cites W2486896237 @default.
- W4360821288 cites W2505396900 @default.
- W4360821288 cites W2524205105 @default.
- W4360821288 cites W2604355929 @default.
- W4360821288 cites W2767655371 @default.
- W4360821288 cites W2781689834 @default.
- W4360821288 cites W2912281700 @default.
- W4360821288 cites W2954267868 @default.
- W4360821288 cites W2969284113 @default.
- W4360821288 cites W2980263538 @default.
- W4360821288 cites W3006146945 @default.
- W4360821288 cites W3041906494 @default.
- W4360821288 cites W3082922695 @default.
- W4360821288 cites W3089759071 @default.
- W4360821288 cites W3119538441 @default.
- W4360821288 cites W3141756814 @default.
- W4360821288 cites W3143796132 @default.
- W4360821288 cites W3159837309 @default.
- W4360821288 cites W3162552700 @default.
- W4360821288 cites W3163830392 @default.
- W4360821288 cites W3171381521 @default.
- W4360821288 cites W3188557215 @default.
- W4360821288 cites W3191007633 @default.
- W4360821288 cites W3196023419 @default.
- W4360821288 cites W4225130886 @default.
- W4360821288 cites W4229333187 @default.
- W4360821288 cites W4281785662 @default.
- W4360821288 cites W4283316896 @default.
- W4360821288 cites W4286517470 @default.
- W4360821288 cites W4295743155 @default.
- W4360821288 cites W4309709564 @default.
- W4360821288 cites W4312313339 @default.
- W4360821288 cites W4313426375 @default.
- W4360821288 doi "https://doi.org/10.1016/j.animal.2023.100786" @default.
- W4360821288 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37075533" @default.
- W4360821288 hasPublicationYear "2023" @default.
- W4360821288 type Work @default.
- W4360821288 citedByCount "0" @default.
- W4360821288 crossrefType "journal-article" @default.
- W4360821288 hasAuthorship W4360821288A5001649348 @default.
- W4360821288 hasAuthorship W4360821288A5051309466 @default.
- W4360821288 hasAuthorship W4360821288A5077710101 @default.
- W4360821288 hasBestOaLocation W43608212881 @default.
- W4360821288 hasConcept C100001284 @default.
- W4360821288 hasConcept C100243477 @default.
- W4360821288 hasConcept C107826830 @default.
- W4360821288 hasConcept C112964050 @default.
- W4360821288 hasConcept C144133560 @default.
- W4360821288 hasConcept C162324750 @default.
- W4360821288 hasConcept C162853370 @default.
- W4360821288 hasConcept C166957645 @default.
- W4360821288 hasConcept C185592680 @default.
- W4360821288 hasConcept C187736073 @default.
- W4360821288 hasConcept C18903297 @default.
- W4360821288 hasConcept C201305675 @default.
- W4360821288 hasConcept C205649164 @default.
- W4360821288 hasConcept C2777146004 @default.
- W4360821288 hasConcept C2779343474 @default.
- W4360821288 hasConcept C2780233690 @default.
- W4360821288 hasConcept C34447519 @default.
- W4360821288 hasConcept C38652104 @default.
- W4360821288 hasConcept C41008148 @default.
- W4360821288 hasConcept C523966790 @default.
- W4360821288 hasConcept C55493867 @default.
- W4360821288 hasConcept C86803240 @default.
- W4360821288 hasConcept C97137747 @default.
- W4360821288 hasConceptScore W4360821288C100001284 @default.
- W4360821288 hasConceptScore W4360821288C100243477 @default.
- W4360821288 hasConceptScore W4360821288C107826830 @default.
- W4360821288 hasConceptScore W4360821288C112964050 @default.
- W4360821288 hasConceptScore W4360821288C144133560 @default.
- W4360821288 hasConceptScore W4360821288C162324750 @default.
- W4360821288 hasConceptScore W4360821288C162853370 @default.
- W4360821288 hasConceptScore W4360821288C166957645 @default.
- W4360821288 hasConceptScore W4360821288C185592680 @default.
- W4360821288 hasConceptScore W4360821288C187736073 @default.
- W4360821288 hasConceptScore W4360821288C18903297 @default.
- W4360821288 hasConceptScore W4360821288C201305675 @default.
- W4360821288 hasConceptScore W4360821288C205649164 @default.
- W4360821288 hasConceptScore W4360821288C2777146004 @default.