Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360822046> ?p ?o ?g. }
- W4360822046 endingPage "075008" @default.
- W4360822046 startingPage "075008" @default.
- W4360822046 abstract "Abstract In the application of data driven structural damage identification (SDI) based on supervised deep learning technology, valid data demarcation is the foundation; a convolutional neural network model with learning ability and capability of processing rich signal information is the core. Based on this understanding, this work makes three contributions: Firstly, the structural damage location and severity are jointly demarcated, and the SDI problem is transformed into a multi-classification task. Secondly, a 3D signal processing convolutional neural networks (3DS-CNN) is designed with an attempt to identify the complex and slight damages using the most basic network structure. Thirdly, a ‘major and subsidiary’ data construction (MSDC) method integrating the key intrinsic mode function is proposed to construct 3D data. Then the proposed schemes are verified by two different structures. The results show that the 3DS-CNN has excellent damage identification ability for small-size data with noise pollution. MSDC method can enrich the feature information of the damage signals and help the network with deep feature excavation, even if the vibration signals are heavily polluted. Going one step further, the impact of sensor placement is discussed, and it is found that when external excitation is obvious, better SDI accuracy can be achieved even using a single sensor signal with slight noise. When the noise interference is obvious, the generalization ability and noise robustness of the network can be enhanced by optimizing sensor placement. In this case, the sensor placement criteria and the sensitive nodes of the structure should be comprehensively and carefully considered to avoid mutual ‘coupling’ interference of data between sensors." @default.
- W4360822046 created "2023-03-25" @default.
- W4360822046 creator A5002854837 @default.
- W4360822046 creator A5063770598 @default.
- W4360822046 date "2023-04-06" @default.
- W4360822046 modified "2023-10-10" @default.
- W4360822046 title "A new convolutional neural network-based framework and data construction method for structural damage identification considering sensor placement" @default.
- W4360822046 cites W1996700759 @default.
- W4360822046 cites W2007221293 @default.
- W4360822046 cites W2052271489 @default.
- W4360822046 cites W2054944014 @default.
- W4360822046 cites W2062959223 @default.
- W4360822046 cites W2087642098 @default.
- W4360822046 cites W2138927484 @default.
- W4360822046 cites W2144402100 @default.
- W4360822046 cites W2147912439 @default.
- W4360822046 cites W2232878705 @default.
- W4360822046 cites W2265995230 @default.
- W4360822046 cites W2557743590 @default.
- W4360822046 cites W2592883472 @default.
- W4360822046 cites W2595141258 @default.
- W4360822046 cites W2609381717 @default.
- W4360822046 cites W2767522444 @default.
- W4360822046 cites W2793386887 @default.
- W4360822046 cites W2862109938 @default.
- W4360822046 cites W2901389252 @default.
- W4360822046 cites W2966944592 @default.
- W4360822046 cites W3011941364 @default.
- W4360822046 cites W3013171469 @default.
- W4360822046 cites W3016123475 @default.
- W4360822046 cites W3083664991 @default.
- W4360822046 cites W3091143872 @default.
- W4360822046 cites W3112057116 @default.
- W4360822046 cites W3134457240 @default.
- W4360822046 cites W3162013530 @default.
- W4360822046 cites W3162119082 @default.
- W4360822046 cites W3195979685 @default.
- W4360822046 cites W3198543989 @default.
- W4360822046 cites W3199798098 @default.
- W4360822046 cites W3201919739 @default.
- W4360822046 cites W3216679110 @default.
- W4360822046 cites W3217206725 @default.
- W4360822046 cites W4205431410 @default.
- W4360822046 cites W4206747145 @default.
- W4360822046 cites W4220965924 @default.
- W4360822046 cites W4224240855 @default.
- W4360822046 cites W4247085832 @default.
- W4360822046 cites W4282968724 @default.
- W4360822046 cites W4284695803 @default.
- W4360822046 cites W4285676326 @default.
- W4360822046 cites W4291222074 @default.
- W4360822046 cites W4291926517 @default.
- W4360822046 cites W4292329337 @default.
- W4360822046 cites W4303940763 @default.
- W4360822046 doi "https://doi.org/10.1088/1361-6501/acc755" @default.
- W4360822046 hasPublicationYear "2023" @default.
- W4360822046 type Work @default.
- W4360822046 citedByCount "3" @default.
- W4360822046 countsByYear W43608220462023 @default.
- W4360822046 crossrefType "journal-article" @default.
- W4360822046 hasAuthorship W4360822046A5002854837 @default.
- W4360822046 hasAuthorship W4360822046A5063770598 @default.
- W4360822046 hasConcept C104317684 @default.
- W4360822046 hasConcept C108583219 @default.
- W4360822046 hasConcept C115961682 @default.
- W4360822046 hasConcept C116834253 @default.
- W4360822046 hasConcept C119857082 @default.
- W4360822046 hasConcept C124101348 @default.
- W4360822046 hasConcept C134306372 @default.
- W4360822046 hasConcept C153180895 @default.
- W4360822046 hasConcept C154945302 @default.
- W4360822046 hasConcept C177148314 @default.
- W4360822046 hasConcept C185592680 @default.
- W4360822046 hasConcept C33923547 @default.
- W4360822046 hasConcept C41008148 @default.
- W4360822046 hasConcept C55493867 @default.
- W4360822046 hasConcept C59822182 @default.
- W4360822046 hasConcept C63479239 @default.
- W4360822046 hasConcept C81363708 @default.
- W4360822046 hasConcept C86803240 @default.
- W4360822046 hasConcept C99498987 @default.
- W4360822046 hasConceptScore W4360822046C104317684 @default.
- W4360822046 hasConceptScore W4360822046C108583219 @default.
- W4360822046 hasConceptScore W4360822046C115961682 @default.
- W4360822046 hasConceptScore W4360822046C116834253 @default.
- W4360822046 hasConceptScore W4360822046C119857082 @default.
- W4360822046 hasConceptScore W4360822046C124101348 @default.
- W4360822046 hasConceptScore W4360822046C134306372 @default.
- W4360822046 hasConceptScore W4360822046C153180895 @default.
- W4360822046 hasConceptScore W4360822046C154945302 @default.
- W4360822046 hasConceptScore W4360822046C177148314 @default.
- W4360822046 hasConceptScore W4360822046C185592680 @default.
- W4360822046 hasConceptScore W4360822046C33923547 @default.
- W4360822046 hasConceptScore W4360822046C41008148 @default.
- W4360822046 hasConceptScore W4360822046C55493867 @default.
- W4360822046 hasConceptScore W4360822046C59822182 @default.
- W4360822046 hasConceptScore W4360822046C63479239 @default.
- W4360822046 hasConceptScore W4360822046C81363708 @default.