Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360838600> ?p ?o ?g. }
- W4360838600 endingPage "11356" @default.
- W4360838600 startingPage "11335" @default.
- W4360838600 abstract "In practical engineering, it is difficult to establish complex nonlinear dynamic equations based on theories of mechanics. Data-driven models are built using neural networks in this paper to meet the needs of high dimension, multi-scale and high precision. We construct a two-coefficient loss function for whole data-driven modeling and substructure data-driven modeling according to the linear multi-step method. The forward Euler method is combined with trained neural networks to predict a five-degree-of-freedom duffing oscillator system. Comparative results show that the prediction accuracy of substructure data-driven modeling is higher than whole data-driven modeling, and the generalization and robustness of the model are verified. Meanwhile, the selection of training data and the number of hidden layers have a great impact on the prediction ability. Adopting an adjustable learning rate, adding control parameters to the network input shows better performance than not adding control parameters to the network input." @default.
- W4360838600 created "2023-03-25" @default.
- W4360838600 creator A5027689617 @default.
- W4360838600 creator A5037160914 @default.
- W4360838600 creator A5044150976 @default.
- W4360838600 creator A5066214116 @default.
- W4360838600 date "2023-03-25" @default.
- W4360838600 modified "2023-10-17" @default.
- W4360838600 title "Neural network modeling and dynamic behavior prediction of nonlinear dynamic systems" @default.
- W4360838600 cites W1604858763 @default.
- W4360838600 cites W1966399079 @default.
- W4360838600 cites W1992909849 @default.
- W4360838600 cites W1997295566 @default.
- W4360838600 cites W2002418948 @default.
- W4360838600 cites W2005725951 @default.
- W4360838600 cites W2300130775 @default.
- W4360838600 cites W2418804175 @default.
- W4360838600 cites W2557243300 @default.
- W4360838600 cites W2772084711 @default.
- W4360838600 cites W2783431150 @default.
- W4360838600 cites W2795191178 @default.
- W4360838600 cites W2896599336 @default.
- W4360838600 cites W2903397918 @default.
- W4360838600 cites W2906778817 @default.
- W4360838600 cites W2909326933 @default.
- W4360838600 cites W2914095169 @default.
- W4360838600 cites W2935478899 @default.
- W4360838600 cites W2937235446 @default.
- W4360838600 cites W2948527938 @default.
- W4360838600 cites W2969984921 @default.
- W4360838600 cites W2975103868 @default.
- W4360838600 cites W3003727719 @default.
- W4360838600 cites W3005071597 @default.
- W4360838600 cites W3008525407 @default.
- W4360838600 cites W3015069299 @default.
- W4360838600 cites W3019701101 @default.
- W4360838600 cites W3037134996 @default.
- W4360838600 cites W3039209232 @default.
- W4360838600 cites W3040981036 @default.
- W4360838600 cites W3042089418 @default.
- W4360838600 cites W3081570945 @default.
- W4360838600 cites W3081716925 @default.
- W4360838600 cites W3082540903 @default.
- W4360838600 cites W3084992777 @default.
- W4360838600 cites W3094248249 @default.
- W4360838600 cites W3121370881 @default.
- W4360838600 cites W3125948809 @default.
- W4360838600 cites W3159947924 @default.
- W4360838600 cites W3165779547 @default.
- W4360838600 cites W3183352083 @default.
- W4360838600 cites W3192802934 @default.
- W4360838600 cites W3216929991 @default.
- W4360838600 cites W4206423916 @default.
- W4360838600 cites W4206581596 @default.
- W4360838600 cites W4239975174 @default.
- W4360838600 cites W4281289094 @default.
- W4360838600 cites W4296185147 @default.
- W4360838600 doi "https://doi.org/10.1007/s11071-023-08407-9" @default.
- W4360838600 hasPublicationYear "2023" @default.
- W4360838600 type Work @default.
- W4360838600 citedByCount "1" @default.
- W4360838600 countsByYear W43608386002023 @default.
- W4360838600 crossrefType "journal-article" @default.
- W4360838600 hasAuthorship W4360838600A5027689617 @default.
- W4360838600 hasAuthorship W4360838600A5037160914 @default.
- W4360838600 hasAuthorship W4360838600A5044150976 @default.
- W4360838600 hasAuthorship W4360838600A5066214116 @default.
- W4360838600 hasBestOaLocation W43608386002 @default.
- W4360838600 hasConcept C104317684 @default.
- W4360838600 hasConcept C11413529 @default.
- W4360838600 hasConcept C121332964 @default.
- W4360838600 hasConcept C127413603 @default.
- W4360838600 hasConcept C134306372 @default.
- W4360838600 hasConcept C154945302 @default.
- W4360838600 hasConcept C158622935 @default.
- W4360838600 hasConcept C177148314 @default.
- W4360838600 hasConcept C185592680 @default.
- W4360838600 hasConcept C202444582 @default.
- W4360838600 hasConcept C2775924081 @default.
- W4360838600 hasConcept C33676613 @default.
- W4360838600 hasConcept C33923547 @default.
- W4360838600 hasConcept C41008148 @default.
- W4360838600 hasConcept C47446073 @default.
- W4360838600 hasConcept C50644808 @default.
- W4360838600 hasConcept C55493867 @default.
- W4360838600 hasConcept C62520636 @default.
- W4360838600 hasConcept C63479239 @default.
- W4360838600 hasConcept C66938386 @default.
- W4360838600 hasConcept C99679407 @default.
- W4360838600 hasConceptScore W4360838600C104317684 @default.
- W4360838600 hasConceptScore W4360838600C11413529 @default.
- W4360838600 hasConceptScore W4360838600C121332964 @default.
- W4360838600 hasConceptScore W4360838600C127413603 @default.
- W4360838600 hasConceptScore W4360838600C134306372 @default.
- W4360838600 hasConceptScore W4360838600C154945302 @default.
- W4360838600 hasConceptScore W4360838600C158622935 @default.
- W4360838600 hasConceptScore W4360838600C177148314 @default.
- W4360838600 hasConceptScore W4360838600C185592680 @default.