Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360839100> ?p ?o ?g. }
- W4360839100 endingPage "102153" @default.
- W4360839100 startingPage "102153" @default.
- W4360839100 abstract "Linear regression is one of the oldest statistical modeling approaches. Still, it is a valuable tool, particularly when it is necessary to create forecast models with low sample sizes. When researchers use this method and have numerous potential regressors, choosing the group of regressors for a model that fulfills all the required assumptions can be challenging. In this sense, the authors developed an open-source Python script that automatically tests all the combinations of regressors under a brute-force approach. The output displays the best linear regression models, regarding the thresholds set by users for the required assumptions: statistical significance of the estimations, multicollinearity, error normality, and homoscedasticity. Further, the script allows the selection of linear regressions with regression coefficients according to the user's expectations. This script was tested with an environmental dataset to predict surface water quality parameters based on landscape metrics and contaminant loads. Among millions of possible combinations, less than 0.1 % of the regressor combinations fulfilled the requirements. The resulting combinations were also tested in geographically weighted regression, with similar results to linear regression. The model's performance was higher for pH and total nitrate and lower for total alkalinity and electrical conductivity.•A Python script was developed to find the best linear regressions within a dataset.•Output regressions are automatically selected based on regression coefficient expectations set by the user and the linear regression assumptions.•The algorithm was successfully validated through an environmental dataset." @default.
- W4360839100 created "2023-03-25" @default.
- W4360839100 creator A5040359473 @default.
- W4360839100 creator A5053466393 @default.
- W4360839100 creator A5070175747 @default.
- W4360839100 creator A5076698864 @default.
- W4360839100 date "2023-01-01" @default.
- W4360839100 modified "2023-09-27" @default.
- W4360839100 title "Water quality predictions through linear regression - A brute force algorithm approach" @default.
- W4360839100 cites W1596444848 @default.
- W4360839100 cites W1658820945 @default.
- W4360839100 cites W1970249195 @default.
- W4360839100 cites W1983141503 @default.
- W4360839100 cites W1988093401 @default.
- W4360839100 cites W2001624770 @default.
- W4360839100 cites W2013851460 @default.
- W4360839100 cites W2025639537 @default.
- W4360839100 cites W2027645262 @default.
- W4360839100 cites W2047120335 @default.
- W4360839100 cites W2054048908 @default.
- W4360839100 cites W2060806362 @default.
- W4360839100 cites W2066625239 @default.
- W4360839100 cites W2079615115 @default.
- W4360839100 cites W2089880642 @default.
- W4360839100 cites W2131036894 @default.
- W4360839100 cites W2142225982 @default.
- W4360839100 cites W2143117649 @default.
- W4360839100 cites W2168745915 @default.
- W4360839100 cites W2322382546 @default.
- W4360839100 cites W2461571180 @default.
- W4360839100 cites W2549786917 @default.
- W4360839100 cites W2580060826 @default.
- W4360839100 cites W2756377150 @default.
- W4360839100 cites W2766563866 @default.
- W4360839100 cites W2771220756 @default.
- W4360839100 cites W2772626348 @default.
- W4360839100 cites W2796649302 @default.
- W4360839100 cites W2809807015 @default.
- W4360839100 cites W2887819238 @default.
- W4360839100 cites W2888519354 @default.
- W4360839100 cites W2890947206 @default.
- W4360839100 cites W2918777376 @default.
- W4360839100 cites W2942676699 @default.
- W4360839100 cites W2943849666 @default.
- W4360839100 cites W2959195406 @default.
- W4360839100 cites W2983570302 @default.
- W4360839100 cites W2990943508 @default.
- W4360839100 cites W2992552345 @default.
- W4360839100 cites W3014761495 @default.
- W4360839100 cites W3018952706 @default.
- W4360839100 cites W3023522186 @default.
- W4360839100 cites W3024269813 @default.
- W4360839100 cites W3040850180 @default.
- W4360839100 cites W3049176154 @default.
- W4360839100 cites W3098592783 @default.
- W4360839100 cites W3112226226 @default.
- W4360839100 cites W3113372098 @default.
- W4360839100 cites W3131711436 @default.
- W4360839100 cites W3135184408 @default.
- W4360839100 cites W3159926663 @default.
- W4360839100 cites W3165935059 @default.
- W4360839100 cites W3186840849 @default.
- W4360839100 cites W4239679701 @default.
- W4360839100 cites W4251428492 @default.
- W4360839100 doi "https://doi.org/10.1016/j.mex.2023.102153" @default.
- W4360839100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37077896" @default.
- W4360839100 hasPublicationYear "2023" @default.
- W4360839100 type Work @default.
- W4360839100 citedByCount "0" @default.
- W4360839100 crossrefType "journal-article" @default.
- W4360839100 hasAuthorship W4360839100A5040359473 @default.
- W4360839100 hasAuthorship W4360839100A5053466393 @default.
- W4360839100 hasAuthorship W4360839100A5070175747 @default.
- W4360839100 hasAuthorship W4360839100A5076698864 @default.
- W4360839100 hasBestOaLocation W43608391001 @default.
- W4360839100 hasConcept C101104100 @default.
- W4360839100 hasConcept C104409967 @default.
- W4360839100 hasConcept C105795698 @default.
- W4360839100 hasConcept C111919701 @default.
- W4360839100 hasConcept C120068334 @default.
- W4360839100 hasConcept C124101348 @default.
- W4360839100 hasConcept C152877465 @default.
- W4360839100 hasConcept C163175372 @default.
- W4360839100 hasConcept C189285262 @default.
- W4360839100 hasConcept C32224588 @default.
- W4360839100 hasConcept C33923547 @default.
- W4360839100 hasConcept C35519122 @default.
- W4360839100 hasConcept C41008148 @default.
- W4360839100 hasConcept C48921125 @default.
- W4360839100 hasConcept C519991488 @default.
- W4360839100 hasConcept C83546350 @default.
- W4360839100 hasConceptScore W4360839100C101104100 @default.
- W4360839100 hasConceptScore W4360839100C104409967 @default.
- W4360839100 hasConceptScore W4360839100C105795698 @default.
- W4360839100 hasConceptScore W4360839100C111919701 @default.
- W4360839100 hasConceptScore W4360839100C120068334 @default.
- W4360839100 hasConceptScore W4360839100C124101348 @default.
- W4360839100 hasConceptScore W4360839100C152877465 @default.