Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360844201> ?p ?o ?g. }
- W4360844201 endingPage "59" @default.
- W4360844201 startingPage "59" @default.
- W4360844201 abstract "Collaborative filtering has proved to be one of the most popular and successful rating prediction techniques over the last few years. In collaborative filtering, each rating prediction, concerning a product or a service, is based on the rating values that users that are considered “close” to the user for whom the prediction is being generated have given to the same product or service. In general, “close” users for some user u correspond to users that have rated items similarly to u and these users are termed as “near neighbors”. As a result, the more reliable these near neighbors are, the more successful predictions the collaborative filtering system will compute and ultimately, the more successful recommendations the recommender system will generate. However, when the dataset’s density is relatively low, it is hard to find reliable near neighbors and hence many predictions fail, resulting in low recommender system reliability. In this work, we present a method that enhances rating prediction quality in low-density collaborative filtering datasets, by considering predictions whose features are associated with high prediction accuracy as additional ratings. The presented method’s efficacy and applicability are substantiated through an extensive multi-parameter evaluation process, using widely acceptable low-density collaborative filtering datasets." @default.
- W4360844201 created "2023-03-25" @default.
- W4360844201 creator A5034227751 @default.
- W4360844201 creator A5043003448 @default.
- W4360844201 creator A5070417213 @default.
- W4360844201 creator A5089364392 @default.
- W4360844201 date "2023-03-24" @default.
- W4360844201 modified "2023-09-30" @default.
- W4360844201 title "Rating Prediction Quality Enhancement in Low-Density Collaborative Filtering Datasets" @default.
- W4360844201 cites W1971040550 @default.
- W4360844201 cites W1996336859 @default.
- W4360844201 cites W2027731328 @default.
- W4360844201 cites W2113054345 @default.
- W4360844201 cites W2139555631 @default.
- W4360844201 cites W2159094788 @default.
- W4360844201 cites W2161118616 @default.
- W4360844201 cites W2244405900 @default.
- W4360844201 cites W2278353820 @default.
- W4360844201 cites W2509678028 @default.
- W4360844201 cites W2741124718 @default.
- W4360844201 cites W2763713171 @default.
- W4360844201 cites W2785332574 @default.
- W4360844201 cites W2790068398 @default.
- W4360844201 cites W2791382412 @default.
- W4360844201 cites W2799303744 @default.
- W4360844201 cites W2811035854 @default.
- W4360844201 cites W2898151875 @default.
- W4360844201 cites W2907605034 @default.
- W4360844201 cites W2907935579 @default.
- W4360844201 cites W2908054697 @default.
- W4360844201 cites W2918817764 @default.
- W4360844201 cites W2921369641 @default.
- W4360844201 cites W2921551312 @default.
- W4360844201 cites W2954351090 @default.
- W4360844201 cites W2965684898 @default.
- W4360844201 cites W2969915818 @default.
- W4360844201 cites W2971196067 @default.
- W4360844201 cites W2980343959 @default.
- W4360844201 cites W2986553571 @default.
- W4360844201 cites W2993119222 @default.
- W4360844201 cites W2999851651 @default.
- W4360844201 cites W3008288562 @default.
- W4360844201 cites W3019253943 @default.
- W4360844201 cites W3030389054 @default.
- W4360844201 cites W3036389516 @default.
- W4360844201 cites W3046888520 @default.
- W4360844201 cites W3086369741 @default.
- W4360844201 cites W3091970212 @default.
- W4360844201 cites W3117020206 @default.
- W4360844201 cites W3121242236 @default.
- W4360844201 cites W3137257141 @default.
- W4360844201 cites W3153713962 @default.
- W4360844201 cites W3154403168 @default.
- W4360844201 cites W3155479293 @default.
- W4360844201 cites W3158786091 @default.
- W4360844201 cites W3178419880 @default.
- W4360844201 cites W3180898686 @default.
- W4360844201 cites W3198221967 @default.
- W4360844201 cites W3200829880 @default.
- W4360844201 cites W3206578012 @default.
- W4360844201 cites W4206062830 @default.
- W4360844201 cites W4213069220 @default.
- W4360844201 cites W4244707235 @default.
- W4360844201 cites W4247569193 @default.
- W4360844201 cites W4282967817 @default.
- W4360844201 cites W4295538050 @default.
- W4360844201 cites W4297971002 @default.
- W4360844201 doi "https://doi.org/10.3390/bdcc7020059" @default.
- W4360844201 hasPublicationYear "2023" @default.
- W4360844201 type Work @default.
- W4360844201 citedByCount "0" @default.
- W4360844201 crossrefType "journal-article" @default.
- W4360844201 hasAuthorship W4360844201A5034227751 @default.
- W4360844201 hasAuthorship W4360844201A5043003448 @default.
- W4360844201 hasAuthorship W4360844201A5070417213 @default.
- W4360844201 hasAuthorship W4360844201A5089364392 @default.
- W4360844201 hasBestOaLocation W43608442011 @default.
- W4360844201 hasConcept C111472728 @default.
- W4360844201 hasConcept C111919701 @default.
- W4360844201 hasConcept C119857082 @default.
- W4360844201 hasConcept C121332964 @default.
- W4360844201 hasConcept C124101348 @default.
- W4360844201 hasConcept C136264566 @default.
- W4360844201 hasConcept C138885662 @default.
- W4360844201 hasConcept C154945302 @default.
- W4360844201 hasConcept C162324750 @default.
- W4360844201 hasConcept C163258240 @default.
- W4360844201 hasConcept C21569690 @default.
- W4360844201 hasConcept C2524010 @default.
- W4360844201 hasConcept C2779530757 @default.
- W4360844201 hasConcept C2780378061 @default.
- W4360844201 hasConcept C33923547 @default.
- W4360844201 hasConcept C41008148 @default.
- W4360844201 hasConcept C43214815 @default.
- W4360844201 hasConcept C557471498 @default.
- W4360844201 hasConcept C62520636 @default.
- W4360844201 hasConcept C90673727 @default.
- W4360844201 hasConcept C98045186 @default.