Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360888919> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4360888919 abstract "Perfectly contractile graphs form a typical class of perfect graphs. In particular, all $k$-colorings of a perfectly contractile graph are Kempe equivalent. Everett and Reed conjectured that a graph is perfectly contractile if and only if it contains no odd holes, no antiholes and no odd prisms. On the other hand the authors and Shibata conjectured that a perfect graph is perfectly contractile if and only if its toric ring, which is called the stable set ring, is quadratic. In the present paper, we characterize when the stable set ring of a (not necessarily perfect) graph is quadratic by using Kempe equivalence. As applications of this characterization, we can claim that if Everett and Reed conjecture is true, then the conjecture of the authors and Shibata is also true. Moreover, we can show that for several important classes of perfectly contractile graphs, the stable set rings are quadratic." @default.
- W4360888919 created "2023-03-25" @default.
- W4360888919 creator A5046851808 @default.
- W4360888919 creator A5089435507 @default.
- W4360888919 date "2023-03-22" @default.
- W4360888919 modified "2023-10-16" @default.
- W4360888919 title "Kempe equivalence and quadratic toric rings" @default.
- W4360888919 doi "https://doi.org/10.48550/arxiv.2303.12824" @default.
- W4360888919 hasPublicationYear "2023" @default.
- W4360888919 type Work @default.
- W4360888919 citedByCount "0" @default.
- W4360888919 crossrefType "posted-content" @default.
- W4360888919 hasAuthorship W4360888919A5046851808 @default.
- W4360888919 hasAuthorship W4360888919A5089435507 @default.
- W4360888919 hasBestOaLocation W43608889191 @default.
- W4360888919 hasConcept C114614502 @default.
- W4360888919 hasConcept C118615104 @default.
- W4360888919 hasConcept C129844170 @default.
- W4360888919 hasConcept C132525143 @default.
- W4360888919 hasConcept C178790620 @default.
- W4360888919 hasConcept C185592680 @default.
- W4360888919 hasConcept C2524010 @default.
- W4360888919 hasConcept C2780069185 @default.
- W4360888919 hasConcept C2780378348 @default.
- W4360888919 hasConcept C2780990831 @default.
- W4360888919 hasConcept C33923547 @default.
- W4360888919 hasConceptScore W4360888919C114614502 @default.
- W4360888919 hasConceptScore W4360888919C118615104 @default.
- W4360888919 hasConceptScore W4360888919C129844170 @default.
- W4360888919 hasConceptScore W4360888919C132525143 @default.
- W4360888919 hasConceptScore W4360888919C178790620 @default.
- W4360888919 hasConceptScore W4360888919C185592680 @default.
- W4360888919 hasConceptScore W4360888919C2524010 @default.
- W4360888919 hasConceptScore W4360888919C2780069185 @default.
- W4360888919 hasConceptScore W4360888919C2780378348 @default.
- W4360888919 hasConceptScore W4360888919C2780990831 @default.
- W4360888919 hasConceptScore W4360888919C33923547 @default.
- W4360888919 hasLocation W43608889191 @default.
- W4360888919 hasOpenAccess W4360888919 @default.
- W4360888919 hasPrimaryLocation W43608889191 @default.
- W4360888919 hasRelatedWork W2229409480 @default.
- W4360888919 hasRelatedWork W2348776509 @default.
- W4360888919 hasRelatedWork W2473022082 @default.
- W4360888919 hasRelatedWork W2619045485 @default.
- W4360888919 hasRelatedWork W2982829914 @default.
- W4360888919 hasRelatedWork W3201982285 @default.
- W4360888919 hasRelatedWork W4288715932 @default.
- W4360888919 hasRelatedWork W4290190164 @default.
- W4360888919 hasRelatedWork W4300410646 @default.
- W4360888919 hasRelatedWork W4315607660 @default.
- W4360888919 isParatext "false" @default.
- W4360888919 isRetracted "false" @default.
- W4360888919 workType "article" @default.