Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360897685> ?p ?o ?g. }
- W4360897685 endingPage "14661" @default.
- W4360897685 startingPage "14650" @default.
- W4360897685 abstract "Simultaneous localization and mapping (SLAM) is the key technology in the implementation of robot intelligence. Compared with the camera, the higher accuracy and stability can be achieved with light detection and ranging (LiDAR) in the indoor environment. However, LiDAR can only acquire the geometric structure information of the environment, and LiDAR SLAM with loop detection is prone to failure in scenes where the geometric structure information is missing or similar. Therefore, we propose a loop closure algorithm, which fuses visual and scan information, makes use of the deep features for loop detection, and then combines camera and LiDAR data for loop verification. We name it fusion SLAM (FSLAM), which uses a tight coupling to fuse the two for loop correction. We compare the differences between visual feature extraction based on deep neural network hierarchical feature network (HF-Net) and handcrafted feature extraction algorithm ORB. The proposed FSLAM method is able to successfully mapping in scenes with similar geometric structures, while its localization and mapping accuracy is significantly improved compared to other algorithms." @default.
- W4360897685 created "2023-03-26" @default.
- W4360897685 creator A5000998512 @default.
- W4360897685 creator A5019208828 @default.
- W4360897685 creator A5042666771 @default.
- W4360897685 creator A5064923113 @default.
- W4360897685 creator A5070687543 @default.
- W4360897685 date "2023-07-01" @default.
- W4360897685 modified "2023-09-23" @default.
- W4360897685 title "A 2-D LiDAR-SLAM Algorithm for Indoor Similar Environment With Deep Visual Loop Closure" @default.
- W4360897685 cites W1512698229 @default.
- W4360897685 cites W1546350490 @default.
- W4360897685 cites W1703761565 @default.
- W4360897685 cites W1967740178 @default.
- W4360897685 cites W1989484209 @default.
- W4360897685 cites W2005389775 @default.
- W4360897685 cites W2021851106 @default.
- W4360897685 cites W2029726047 @default.
- W4360897685 cites W2042819305 @default.
- W4360897685 cites W2058535340 @default.
- W4360897685 cites W2117228865 @default.
- W4360897685 cites W2130422193 @default.
- W4360897685 cites W2140881794 @default.
- W4360897685 cites W2144515720 @default.
- W4360897685 cites W2146881125 @default.
- W4360897685 cites W2411093439 @default.
- W4360897685 cites W2605735511 @default.
- W4360897685 cites W2771328083 @default.
- W4360897685 cites W2793027874 @default.
- W4360897685 cites W2804638980 @default.
- W4360897685 cites W2808542382 @default.
- W4360897685 cites W2886968365 @default.
- W4360897685 cites W2943461297 @default.
- W4360897685 cites W2960033181 @default.
- W4360897685 cites W2962705366 @default.
- W4360897685 cites W2971097982 @default.
- W4360897685 cites W2996333182 @default.
- W4360897685 cites W3015235064 @default.
- W4360897685 cites W3043075211 @default.
- W4360897685 cites W3102327032 @default.
- W4360897685 cites W3103648783 @default.
- W4360897685 cites W3119667787 @default.
- W4360897685 cites W3126285971 @default.
- W4360897685 cites W3131673036 @default.
- W4360897685 cites W3163521688 @default.
- W4360897685 cites W3165610079 @default.
- W4360897685 cites W3176504617 @default.
- W4360897685 cites W3199184510 @default.
- W4360897685 cites W3207892421 @default.
- W4360897685 doi "https://doi.org/10.1109/jsen.2023.3260104" @default.
- W4360897685 hasPublicationYear "2023" @default.
- W4360897685 type Work @default.
- W4360897685 citedByCount "0" @default.
- W4360897685 crossrefType "journal-article" @default.
- W4360897685 hasAuthorship W4360897685A5000998512 @default.
- W4360897685 hasAuthorship W4360897685A5019208828 @default.
- W4360897685 hasAuthorship W4360897685A5042666771 @default.
- W4360897685 hasAuthorship W4360897685A5064923113 @default.
- W4360897685 hasAuthorship W4360897685A5070687543 @default.
- W4360897685 hasConcept C114614502 @default.
- W4360897685 hasConcept C115051666 @default.
- W4360897685 hasConcept C119599485 @default.
- W4360897685 hasConcept C127413603 @default.
- W4360897685 hasConcept C138885662 @default.
- W4360897685 hasConcept C141353440 @default.
- W4360897685 hasConcept C153180895 @default.
- W4360897685 hasConcept C154945302 @default.
- W4360897685 hasConcept C184670325 @default.
- W4360897685 hasConcept C19966478 @default.
- W4360897685 hasConcept C205649164 @default.
- W4360897685 hasConcept C2776401178 @default.
- W4360897685 hasConcept C2779624466 @default.
- W4360897685 hasConcept C31972630 @default.
- W4360897685 hasConcept C33923547 @default.
- W4360897685 hasConcept C36464697 @default.
- W4360897685 hasConcept C41008148 @default.
- W4360897685 hasConcept C41895202 @default.
- W4360897685 hasConcept C51399673 @default.
- W4360897685 hasConcept C52622490 @default.
- W4360897685 hasConcept C62649853 @default.
- W4360897685 hasConcept C76155785 @default.
- W4360897685 hasConcept C86369673 @default.
- W4360897685 hasConcept C90509273 @default.
- W4360897685 hasConceptScore W4360897685C114614502 @default.
- W4360897685 hasConceptScore W4360897685C115051666 @default.
- W4360897685 hasConceptScore W4360897685C119599485 @default.
- W4360897685 hasConceptScore W4360897685C127413603 @default.
- W4360897685 hasConceptScore W4360897685C138885662 @default.
- W4360897685 hasConceptScore W4360897685C141353440 @default.
- W4360897685 hasConceptScore W4360897685C153180895 @default.
- W4360897685 hasConceptScore W4360897685C154945302 @default.
- W4360897685 hasConceptScore W4360897685C184670325 @default.
- W4360897685 hasConceptScore W4360897685C19966478 @default.
- W4360897685 hasConceptScore W4360897685C205649164 @default.
- W4360897685 hasConceptScore W4360897685C2776401178 @default.
- W4360897685 hasConceptScore W4360897685C2779624466 @default.
- W4360897685 hasConceptScore W4360897685C31972630 @default.
- W4360897685 hasConceptScore W4360897685C33923547 @default.