Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360930306> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4360930306 endingPage "16" @default.
- W4360930306 startingPage "12" @default.
- W4360930306 abstract "Purpose: This study aims to examine the diagnostic performance of detecting pulp stones with a deep learning model on bite-wing radiographs. Material and Methods: 2203 radiographs were scanned retrospectively. 1745 pulp stones were marked on 1269 bite-wing radiographs with the CranioCatch labeling program (CranioCatch, Eskişehir, Turkey) in patients over 16 years old after the consensus of two experts of Maxillofacial Radiologists. This dataset was divided into 3 grou as training (n = 1017 (1396 labels), validation (n = 126 (174 labels)) and test (n = 126) (175 labels) sets, respectively. The deep learning model was developed using Mask R-CNN architecture. A confusion matrix was used to evaluate the success of the model. Results: The results of precision, sensitivity, and F1 obtained using the Mask R-CNN architecture in the test dataset were found to be 0.9115, 0.8879, and 0.8995, respectively. Discussion- Conclusion: Deep learning algorithms can detect pulp stones. With this, clinicians can use software systems based on artificial intelligence as a diagnostic support system. Mask R-CNN architecture can be used for pulp stone detection with approximately 90% sensitivity. The larger data sets increase the accuracy of deep learning systems. More studies are needed to increase the success rates of deep learning models." @default.
- W4360930306 created "2023-03-26" @default.
- W4360930306 creator A5015885915 @default.
- W4360930306 creator A5035747313 @default.
- W4360930306 creator A5046810190 @default.
- W4360930306 creator A5059624643 @default.
- W4360930306 date "2023-04-30" @default.
- W4360930306 modified "2023-10-03" @default.
- W4360930306 title "Detecting Pulp Stones with Automatic Deep Learning in Bitewing Radiographs: A Pilot Study of Artificial Intelligence" @default.
- W4360930306 cites W1978882628 @default.
- W4360930306 cites W1983962466 @default.
- W4360930306 cites W2011038506 @default.
- W4360930306 cites W2049575982 @default.
- W4360930306 cites W2074975921 @default.
- W4360930306 cites W2117025224 @default.
- W4360930306 cites W2138573925 @default.
- W4360930306 cites W2154944052 @default.
- W4360930306 cites W2161262932 @default.
- W4360930306 cites W2618025634 @default.
- W4360930306 cites W2965207724 @default.
- W4360930306 cites W2999494042 @default.
- W4360930306 cites W3049499902 @default.
- W4360930306 cites W4220992559 @default.
- W4360930306 doi "https://doi.org/10.52037/eads.2023.0004" @default.
- W4360930306 hasPublicationYear "2023" @default.
- W4360930306 type Work @default.
- W4360930306 citedByCount "0" @default.
- W4360930306 crossrefType "journal-article" @default.
- W4360930306 hasAuthorship W4360930306A5015885915 @default.
- W4360930306 hasAuthorship W4360930306A5035747313 @default.
- W4360930306 hasAuthorship W4360930306A5046810190 @default.
- W4360930306 hasAuthorship W4360930306A5059624643 @default.
- W4360930306 hasBestOaLocation W43609303061 @default.
- W4360930306 hasConcept C108583219 @default.
- W4360930306 hasConcept C11171543 @default.
- W4360930306 hasConcept C138602881 @default.
- W4360930306 hasConcept C141071460 @default.
- W4360930306 hasConcept C154945302 @default.
- W4360930306 hasConcept C15744967 @default.
- W4360930306 hasConcept C188442228 @default.
- W4360930306 hasConcept C199343813 @default.
- W4360930306 hasConcept C2781140086 @default.
- W4360930306 hasConcept C29694066 @default.
- W4360930306 hasConcept C36454342 @default.
- W4360930306 hasConcept C41008148 @default.
- W4360930306 hasConcept C71924100 @default.
- W4360930306 hasConceptScore W4360930306C108583219 @default.
- W4360930306 hasConceptScore W4360930306C11171543 @default.
- W4360930306 hasConceptScore W4360930306C138602881 @default.
- W4360930306 hasConceptScore W4360930306C141071460 @default.
- W4360930306 hasConceptScore W4360930306C154945302 @default.
- W4360930306 hasConceptScore W4360930306C15744967 @default.
- W4360930306 hasConceptScore W4360930306C188442228 @default.
- W4360930306 hasConceptScore W4360930306C199343813 @default.
- W4360930306 hasConceptScore W4360930306C2781140086 @default.
- W4360930306 hasConceptScore W4360930306C29694066 @default.
- W4360930306 hasConceptScore W4360930306C36454342 @default.
- W4360930306 hasConceptScore W4360930306C41008148 @default.
- W4360930306 hasConceptScore W4360930306C71924100 @default.
- W4360930306 hasIssue "1" @default.
- W4360930306 hasLocation W43609303061 @default.
- W4360930306 hasOpenAccess W4360930306 @default.
- W4360930306 hasPrimaryLocation W43609303061 @default.
- W4360930306 hasRelatedWork W2005801879 @default.
- W4360930306 hasRelatedWork W2731899572 @default.
- W4360930306 hasRelatedWork W2939353110 @default.
- W4360930306 hasRelatedWork W3009238340 @default.
- W4360930306 hasRelatedWork W3102912986 @default.
- W4360930306 hasRelatedWork W3156188347 @default.
- W4360930306 hasRelatedWork W3215138031 @default.
- W4360930306 hasRelatedWork W4231994957 @default.
- W4360930306 hasRelatedWork W4321369474 @default.
- W4360930306 hasRelatedWork W4366202965 @default.
- W4360930306 hasVolume "50" @default.
- W4360930306 isParatext "false" @default.
- W4360930306 isRetracted "false" @default.
- W4360930306 workType "article" @default.