Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360938698> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4360938698 abstract "Four machine learning (ML) models including a deep neural network, a long short‐term memory network, a random forest (RF), and an extreme gradient boosting are implemented to predict CO–NO x emissions from a natural gas power plant. A new feature optimization scheme (FOS) via a sequencing process of feature selection and hyperparameter optimization can intensify the ML models. Through the procedures of training, validation, and testing, reliable ML models need to take high prediction accuracy and fast training into account. After a few comparisons, it is found that 1) the FOS effectively improves the prediction accuracy by 18%–67%; 2) the FOS‐based RF model is an appropriate option to carry out the fast and accurate prediction of CO–NO x emissions by using the decision tree classifiers." @default.
- W4360938698 created "2023-03-26" @default.
- W4360938698 creator A5006801129 @default.
- W4360938698 creator A5006836243 @default.
- W4360938698 creator A5009049025 @default.
- W4360938698 creator A5025576239 @default.
- W4360938698 creator A5054044012 @default.
- W4360938698 date "2023-04-07" @default.
- W4360938698 modified "2023-10-14" @default.
- W4360938698 title "Prediction of CO–NO<sub><i>x</i></sub> Emissions from a Natural Gas Power Plant Using Proper Machine Learning Models" @default.
- W4360938698 cites W1978195512 @default.
- W4360938698 cites W2059433485 @default.
- W4360938698 cites W2064675550 @default.
- W4360938698 cites W2166941621 @default.
- W4360938698 cites W2911964244 @default.
- W4360938698 cites W2990434508 @default.
- W4360938698 cites W2995916173 @default.
- W4360938698 cites W3023430131 @default.
- W4360938698 cites W3034872633 @default.
- W4360938698 cites W3046678016 @default.
- W4360938698 cites W3138397952 @default.
- W4360938698 cites W3156368563 @default.
- W4360938698 cites W3194894798 @default.
- W4360938698 cites W3197715237 @default.
- W4360938698 cites W3204655310 @default.
- W4360938698 cites W3211104779 @default.
- W4360938698 cites W4205245734 @default.
- W4360938698 cites W4224305731 @default.
- W4360938698 cites W4226102192 @default.
- W4360938698 cites W4280532370 @default.
- W4360938698 doi "https://doi.org/10.1002/ente.202300041" @default.
- W4360938698 hasPublicationYear "2023" @default.
- W4360938698 type Work @default.
- W4360938698 citedByCount "1" @default.
- W4360938698 countsByYear W43609386982023 @default.
- W4360938698 crossrefType "journal-article" @default.
- W4360938698 hasAuthorship W4360938698A5006801129 @default.
- W4360938698 hasAuthorship W4360938698A5006836243 @default.
- W4360938698 hasAuthorship W4360938698A5009049025 @default.
- W4360938698 hasAuthorship W4360938698A5025576239 @default.
- W4360938698 hasAuthorship W4360938698A5054044012 @default.
- W4360938698 hasConcept C10485038 @default.
- W4360938698 hasConcept C119857082 @default.
- W4360938698 hasConcept C12267149 @default.
- W4360938698 hasConcept C148483581 @default.
- W4360938698 hasConcept C154945302 @default.
- W4360938698 hasConcept C169258074 @default.
- W4360938698 hasConcept C41008148 @default.
- W4360938698 hasConcept C46686674 @default.
- W4360938698 hasConcept C50644808 @default.
- W4360938698 hasConcept C70153297 @default.
- W4360938698 hasConcept C84525736 @default.
- W4360938698 hasConcept C8642999 @default.
- W4360938698 hasConceptScore W4360938698C10485038 @default.
- W4360938698 hasConceptScore W4360938698C119857082 @default.
- W4360938698 hasConceptScore W4360938698C12267149 @default.
- W4360938698 hasConceptScore W4360938698C148483581 @default.
- W4360938698 hasConceptScore W4360938698C154945302 @default.
- W4360938698 hasConceptScore W4360938698C169258074 @default.
- W4360938698 hasConceptScore W4360938698C41008148 @default.
- W4360938698 hasConceptScore W4360938698C46686674 @default.
- W4360938698 hasConceptScore W4360938698C50644808 @default.
- W4360938698 hasConceptScore W4360938698C70153297 @default.
- W4360938698 hasConceptScore W4360938698C84525736 @default.
- W4360938698 hasConceptScore W4360938698C8642999 @default.
- W4360938698 hasFunder F4320322795 @default.
- W4360938698 hasFunder F4320334764 @default.
- W4360938698 hasIssue "7" @default.
- W4360938698 hasLocation W43609386981 @default.
- W4360938698 hasOpenAccess W4360938698 @default.
- W4360938698 hasPrimaryLocation W43609386981 @default.
- W4360938698 hasRelatedWork W1974336862 @default.
- W4360938698 hasRelatedWork W2953665647 @default.
- W4360938698 hasRelatedWork W2954882791 @default.
- W4360938698 hasRelatedWork W3014750173 @default.
- W4360938698 hasRelatedWork W3169687406 @default.
- W4360938698 hasRelatedWork W3192751261 @default.
- W4360938698 hasRelatedWork W3200811867 @default.
- W4360938698 hasRelatedWork W4205712847 @default.
- W4360938698 hasRelatedWork W4281646320 @default.
- W4360938698 hasRelatedWork W4287818966 @default.
- W4360938698 hasVolume "11" @default.
- W4360938698 isParatext "false" @default.
- W4360938698 isRetracted "false" @default.
- W4360938698 workType "article" @default.