Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360948894> ?p ?o ?g. }
- W4360948894 abstract "Abstract We aim to study the temporal patterns of activity in points of interest of cities around the world. In order to do so, we use the data provided by the online location-based social network Foursquare, where users make check-ins that indicate points of interest in the city. The data set comprises more than 90 million check-ins in 632 cities of 87 countries in 5 continents. We analyzed more than 11 million points of interest including all sorts of places: airports, restaurants, parks, hospitals, and many others. With this information, we obtained spatial and temporal patterns of activities for each city. We quantify similarities and differences of these patterns for all the cities involved and construct a network connecting pairs of cities. The links of this network indicate the similarity of temporal visitation patterns of points of interest between cities and is quantified with the Kullback-Leibler divergence between two distributions. Then, we obtained the community structure of this network and the geographic distribution of these communities worldwide. For comparison, we also use a Machine Learning algorithm—unsupervised agglomerative clustering—to obtain clusters or communities of cities with similar patterns. The main result is that both approaches give the same classification of five communities belonging to five different continents worldwide. This suggests that temporal patterns of activity can be universal, with some geographical, historical, and cultural variations, on a planetary scale." @default.
- W4360948894 created "2023-03-26" @default.
- W4360948894 creator A5050130088 @default.
- W4360948894 creator A5074715245 @default.
- W4360948894 creator A5078095974 @default.
- W4360948894 date "2023-03-25" @default.
- W4360948894 modified "2023-09-30" @default.
- W4360948894 title "Temporal visitation patterns of points of interest in cities on a planetary scale: a network science and machine learning approach" @default.
- W4360948894 cites W1922580768 @default.
- W4360948894 cites W1963905090 @default.
- W4360948894 cites W1965555277 @default.
- W4360948894 cites W1972309850 @default.
- W4360948894 cites W1982300822 @default.
- W4360948894 cites W1987228002 @default.
- W4360948894 cites W2013598124 @default.
- W4360948894 cites W2071702404 @default.
- W4360948894 cites W2095293504 @default.
- W4360948894 cites W2095702309 @default.
- W4360948894 cites W2106076422 @default.
- W4360948894 cites W2120025875 @default.
- W4360948894 cites W2127048411 @default.
- W4360948894 cites W2129343844 @default.
- W4360948894 cites W2131681506 @default.
- W4360948894 cites W2133400794 @default.
- W4360948894 cites W2151936673 @default.
- W4360948894 cites W2299288249 @default.
- W4360948894 cites W2763329470 @default.
- W4360948894 cites W2804764041 @default.
- W4360948894 cites W2913696439 @default.
- W4360948894 cites W2921568240 @default.
- W4360948894 cites W2948360451 @default.
- W4360948894 cites W2963000270 @default.
- W4360948894 cites W2963266777 @default.
- W4360948894 cites W2997591727 @default.
- W4360948894 cites W3009376433 @default.
- W4360948894 cites W3032521456 @default.
- W4360948894 cites W3034912136 @default.
- W4360948894 cites W3042314439 @default.
- W4360948894 cites W3098208509 @default.
- W4360948894 cites W3103722330 @default.
- W4360948894 cites W3112347720 @default.
- W4360948894 cites W3113518808 @default.
- W4360948894 cites W3121562087 @default.
- W4360948894 cites W3130082344 @default.
- W4360948894 cites W3135318152 @default.
- W4360948894 cites W3159319138 @default.
- W4360948894 cites W3163497136 @default.
- W4360948894 cites W3203520980 @default.
- W4360948894 cites W3210043268 @default.
- W4360948894 cites W4214647333 @default.
- W4360948894 cites W4233885370 @default.
- W4360948894 cites W4248111217 @default.
- W4360948894 cites W4250019451 @default.
- W4360948894 cites W4309385538 @default.
- W4360948894 cites W7143572 @default.
- W4360948894 doi "https://doi.org/10.1038/s41598-023-32074-w" @default.
- W4360948894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36966183" @default.
- W4360948894 hasPublicationYear "2023" @default.
- W4360948894 type Work @default.
- W4360948894 citedByCount "0" @default.
- W4360948894 crossrefType "journal-article" @default.
- W4360948894 hasAuthorship W4360948894A5050130088 @default.
- W4360948894 hasAuthorship W4360948894A5074715245 @default.
- W4360948894 hasAuthorship W4360948894A5078095974 @default.
- W4360948894 hasBestOaLocation W43609488941 @default.
- W4360948894 hasConcept C103278499 @default.
- W4360948894 hasConcept C110121322 @default.
- W4360948894 hasConcept C115961682 @default.
- W4360948894 hasConcept C124101348 @default.
- W4360948894 hasConcept C134306372 @default.
- W4360948894 hasConcept C138885662 @default.
- W4360948894 hasConcept C150140777 @default.
- W4360948894 hasConcept C154945302 @default.
- W4360948894 hasConcept C158709400 @default.
- W4360948894 hasConcept C177264268 @default.
- W4360948894 hasConcept C18903297 @default.
- W4360948894 hasConcept C199360897 @default.
- W4360948894 hasConcept C205649164 @default.
- W4360948894 hasConcept C207390915 @default.
- W4360948894 hasConcept C2522767166 @default.
- W4360948894 hasConcept C2778755073 @default.
- W4360948894 hasConcept C2780801425 @default.
- W4360948894 hasConcept C33923547 @default.
- W4360948894 hasConcept C41008148 @default.
- W4360948894 hasConcept C41895202 @default.
- W4360948894 hasConcept C58640448 @default.
- W4360948894 hasConcept C73555534 @default.
- W4360948894 hasConcept C86803240 @default.
- W4360948894 hasConcept C92835128 @default.
- W4360948894 hasConceptScore W4360948894C103278499 @default.
- W4360948894 hasConceptScore W4360948894C110121322 @default.
- W4360948894 hasConceptScore W4360948894C115961682 @default.
- W4360948894 hasConceptScore W4360948894C124101348 @default.
- W4360948894 hasConceptScore W4360948894C134306372 @default.
- W4360948894 hasConceptScore W4360948894C138885662 @default.
- W4360948894 hasConceptScore W4360948894C150140777 @default.
- W4360948894 hasConceptScore W4360948894C154945302 @default.
- W4360948894 hasConceptScore W4360948894C158709400 @default.
- W4360948894 hasConceptScore W4360948894C177264268 @default.
- W4360948894 hasConceptScore W4360948894C18903297 @default.