Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360962093> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4360962093 endingPage "4136" @default.
- W4360962093 startingPage "4136" @default.
- W4360962093 abstract "To obtain high performance, generalization, and accuracy in machine learning applications, such as prediction or anomaly detection, large datasets are a necessary prerequisite. Moreover, the collection of data is time-consuming, difficult, and expensive for many imbalanced or small datasets. These challenges are evident in collecting data for financial and banking services, pharmaceuticals and healthcare, manufacturing and the automobile, robotics car, sensor time-series data, and many more. To overcome the challenges of data collection, researchers in many domains are becoming more and more interested in the development or generation of synthetic data. Generating synthetic time-series data is far more complicated and expensive than generating synthetic tabular data. The primary objective of the paper is to generate multivariate time-series data (for continuous and mixed parameters) that are comparable and evaluated with real multivariate time-series synthetic data. After being trained to produce such data, a novel GAN architecture named as MTS-TGAN is proposed and then assessed using both qualitative measures namely t-SNE, PCA, discriminative and predictive scores as well as quantitative measures, for which an RNN model is implemented, which calculates MAE and MSLE scores for three training phases; Train Real Test Real, Train Real Test Synthetic and Train Synthetic Test Real. The model is able to reduce the overall error up to 13% and 10% in predictive and discriminative scores, respectively. The research’s objectives are met, and the outcomes demonstrate that MTS-TGAN is able to pick up on the distribution and underlying knowledge included in the attributes of the real data and it can serve as a starting point for additional research in the respective area." @default.
- W4360962093 created "2023-03-26" @default.
- W4360962093 creator A5026497475 @default.
- W4360962093 creator A5039100858 @default.
- W4360962093 creator A5045024771 @default.
- W4360962093 creator A5071723171 @default.
- W4360962093 date "2023-03-24" @default.
- W4360962093 modified "2023-09-24" @default.
- W4360962093 title "Qualitative and Quantitative Evaluation of Multivariate Time-Series Synthetic Data Generated Using MTS-TGAN: A Novel Approach" @default.
- W4360962093 cites W1984289242 @default.
- W4360962093 cites W2089468765 @default.
- W4360962093 cites W2745766115 @default.
- W4360962093 cites W2755577605 @default.
- W4360962093 cites W2765811365 @default.
- W4360962093 cites W2773662615 @default.
- W4360962093 cites W2906805076 @default.
- W4360962093 cites W2911200746 @default.
- W4360962093 cites W2963017889 @default.
- W4360962093 cites W2963420272 @default.
- W4360962093 cites W2963446712 @default.
- W4360962093 cites W3081091883 @default.
- W4360962093 cites W3096831136 @default.
- W4360962093 cites W3155381155 @default.
- W4360962093 cites W3167297489 @default.
- W4360962093 cites W4240495026 @default.
- W4360962093 doi "https://doi.org/10.3390/app13074136" @default.
- W4360962093 hasPublicationYear "2023" @default.
- W4360962093 type Work @default.
- W4360962093 citedByCount "2" @default.
- W4360962093 countsByYear W43609620932023 @default.
- W4360962093 crossrefType "journal-article" @default.
- W4360962093 hasAuthorship W4360962093A5026497475 @default.
- W4360962093 hasAuthorship W4360962093A5039100858 @default.
- W4360962093 hasAuthorship W4360962093A5045024771 @default.
- W4360962093 hasAuthorship W4360962093A5071723171 @default.
- W4360962093 hasBestOaLocation W43609620931 @default.
- W4360962093 hasConcept C105795698 @default.
- W4360962093 hasConcept C119857082 @default.
- W4360962093 hasConcept C124101348 @default.
- W4360962093 hasConcept C133462117 @default.
- W4360962093 hasConcept C134306372 @default.
- W4360962093 hasConcept C151406439 @default.
- W4360962093 hasConcept C154945302 @default.
- W4360962093 hasConcept C160920958 @default.
- W4360962093 hasConcept C161584116 @default.
- W4360962093 hasConcept C177148314 @default.
- W4360962093 hasConcept C33923547 @default.
- W4360962093 hasConcept C41008148 @default.
- W4360962093 hasConcept C97931131 @default.
- W4360962093 hasConceptScore W4360962093C105795698 @default.
- W4360962093 hasConceptScore W4360962093C119857082 @default.
- W4360962093 hasConceptScore W4360962093C124101348 @default.
- W4360962093 hasConceptScore W4360962093C133462117 @default.
- W4360962093 hasConceptScore W4360962093C134306372 @default.
- W4360962093 hasConceptScore W4360962093C151406439 @default.
- W4360962093 hasConceptScore W4360962093C154945302 @default.
- W4360962093 hasConceptScore W4360962093C160920958 @default.
- W4360962093 hasConceptScore W4360962093C161584116 @default.
- W4360962093 hasConceptScore W4360962093C177148314 @default.
- W4360962093 hasConceptScore W4360962093C33923547 @default.
- W4360962093 hasConceptScore W4360962093C41008148 @default.
- W4360962093 hasConceptScore W4360962093C97931131 @default.
- W4360962093 hasIssue "7" @default.
- W4360962093 hasLocation W43609620931 @default.
- W4360962093 hasOpenAccess W4360962093 @default.
- W4360962093 hasPrimaryLocation W43609620931 @default.
- W4360962093 hasRelatedWork W10944326 @default.
- W4360962093 hasRelatedWork W2026121273 @default.
- W4360962093 hasRelatedWork W2102106825 @default.
- W4360962093 hasRelatedWork W2354804553 @default.
- W4360962093 hasRelatedWork W2801772698 @default.
- W4360962093 hasRelatedWork W2961085424 @default.
- W4360962093 hasRelatedWork W2983744209 @default.
- W4360962093 hasRelatedWork W3122022143 @default.
- W4360962093 hasRelatedWork W4306674287 @default.
- W4360962093 hasRelatedWork W66955737 @default.
- W4360962093 hasVolume "13" @default.
- W4360962093 isParatext "false" @default.
- W4360962093 isRetracted "false" @default.
- W4360962093 workType "article" @default.