Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360962303> ?p ?o ?g. }
- W4360962303 endingPage "4140" @default.
- W4360962303 startingPage "4140" @default.
- W4360962303 abstract "Waste segregation, management, transportation, and disposal must be carefully managed to reduce the danger to patients, the public, and risks to the environment’s health and safety. The previous method of monitoring trash in strategically placed garbage bins is a time-consuming and inefficient method that wastes time, human effort, and money, and is also incompatible with smart city needs. So, the goal is to reduce individual decision-making and increase the productivity of the waste categorization process. Using a convolutional neural network (CNN), the study sought to create an image classifier that recognizes items and classifies trash material. This paper provides an overview of trash monitoring methods, garbage disposal strategies, and the technology used in establishing a waste management system. Finally, an efficient system and waste disposal approach is provided that may be employed in the future to improve performance and cost effectiveness. One of the most significant barriers to efficient waste management can now be overcome with the aid of a deep learning technique. The proposed method outperformed the alternative AlexNet, VGG16, and ResNet34 methods." @default.
- W4360962303 created "2023-03-26" @default.
- W4360962303 creator A5003423341 @default.
- W4360962303 creator A5006355592 @default.
- W4360962303 creator A5021602165 @default.
- W4360962303 creator A5044154709 @default.
- W4360962303 creator A5051920398 @default.
- W4360962303 date "2023-03-24" @default.
- W4360962303 modified "2023-10-04" @default.
- W4360962303 title "Efficient Future Waste Management: A Learning-Based Approach with Deep Neural Networks for Smart System (LADS)" @default.
- W4360962303 cites W2159686933 @default.
- W4360962303 cites W2412509443 @default.
- W4360962303 cites W2624147939 @default.
- W4360962303 cites W2744316982 @default.
- W4360962303 cites W2765438000 @default.
- W4360962303 cites W2789876780 @default.
- W4360962303 cites W2800114294 @default.
- W4360962303 cites W2899218398 @default.
- W4360962303 cites W2901025950 @default.
- W4360962303 cites W2915027978 @default.
- W4360962303 cites W2919358988 @default.
- W4360962303 cites W2947409955 @default.
- W4360962303 cites W2963253967 @default.
- W4360962303 cites W2967357336 @default.
- W4360962303 cites W2984156961 @default.
- W4360962303 cites W3014847672 @default.
- W4360962303 cites W3083300764 @default.
- W4360962303 cites W3083630455 @default.
- W4360962303 cites W3113671503 @default.
- W4360962303 cites W3115612815 @default.
- W4360962303 cites W3120220685 @default.
- W4360962303 cites W3126236051 @default.
- W4360962303 cites W3136628878 @default.
- W4360962303 cites W3148816453 @default.
- W4360962303 cites W3158210951 @default.
- W4360962303 cites W3195513372 @default.
- W4360962303 cites W3199010270 @default.
- W4360962303 cites W3202131517 @default.
- W4360962303 cites W4200274790 @default.
- W4360962303 cites W4206019003 @default.
- W4360962303 cites W4211123349 @default.
- W4360962303 cites W4214861127 @default.
- W4360962303 cites W4220675743 @default.
- W4360962303 cites W4283652716 @default.
- W4360962303 cites W4286488471 @default.
- W4360962303 cites W4309701552 @default.
- W4360962303 cites W4312242979 @default.
- W4360962303 cites W4319864173 @default.
- W4360962303 cites W4320913312 @default.
- W4360962303 doi "https://doi.org/10.3390/app13074140" @default.
- W4360962303 hasPublicationYear "2023" @default.
- W4360962303 type Work @default.
- W4360962303 citedByCount "1" @default.
- W4360962303 countsByYear W43609623032023 @default.
- W4360962303 crossrefType "journal-article" @default.
- W4360962303 hasAuthorship W4360962303A5003423341 @default.
- W4360962303 hasAuthorship W4360962303A5006355592 @default.
- W4360962303 hasAuthorship W4360962303A5021602165 @default.
- W4360962303 hasAuthorship W4360962303A5044154709 @default.
- W4360962303 hasAuthorship W4360962303A5051920398 @default.
- W4360962303 hasBestOaLocation W43609623031 @default.
- W4360962303 hasConcept C108583219 @default.
- W4360962303 hasConcept C111919701 @default.
- W4360962303 hasConcept C112930515 @default.
- W4360962303 hasConcept C144133560 @default.
- W4360962303 hasConcept C154945302 @default.
- W4360962303 hasConcept C199360897 @default.
- W4360962303 hasConcept C41008148 @default.
- W4360962303 hasConcept C75403996 @default.
- W4360962303 hasConcept C81363708 @default.
- W4360962303 hasConcept C94124525 @default.
- W4360962303 hasConcept C98045186 @default.
- W4360962303 hasConceptScore W4360962303C108583219 @default.
- W4360962303 hasConceptScore W4360962303C111919701 @default.
- W4360962303 hasConceptScore W4360962303C112930515 @default.
- W4360962303 hasConceptScore W4360962303C144133560 @default.
- W4360962303 hasConceptScore W4360962303C154945302 @default.
- W4360962303 hasConceptScore W4360962303C199360897 @default.
- W4360962303 hasConceptScore W4360962303C41008148 @default.
- W4360962303 hasConceptScore W4360962303C75403996 @default.
- W4360962303 hasConceptScore W4360962303C81363708 @default.
- W4360962303 hasConceptScore W4360962303C94124525 @default.
- W4360962303 hasConceptScore W4360962303C98045186 @default.
- W4360962303 hasIssue "7" @default.
- W4360962303 hasLocation W43609623031 @default.
- W4360962303 hasOpenAccess W4360962303 @default.
- W4360962303 hasPrimaryLocation W43609623031 @default.
- W4360962303 hasRelatedWork W2731899572 @default.
- W4360962303 hasRelatedWork W2999805992 @default.
- W4360962303 hasRelatedWork W3116150086 @default.
- W4360962303 hasRelatedWork W3133861977 @default.
- W4360962303 hasRelatedWork W4200173597 @default.
- W4360962303 hasRelatedWork W4283589925 @default.
- W4360962303 hasRelatedWork W4291897433 @default.
- W4360962303 hasRelatedWork W4312417841 @default.
- W4360962303 hasRelatedWork W4321369474 @default.
- W4360962303 hasRelatedWork W4384103574 @default.
- W4360962303 hasVolume "13" @default.