Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360980617> ?p ?o ?g. }
- W4360980617 endingPage "1562" @default.
- W4360980617 startingPage "1551" @default.
- W4360980617 abstract "Abstract Phytoliths constitute microscopic SiO 2 -rich biominerals formed in the cellular system of many living plants and are often preserved in soils, sediments and artefacts. Their analysis contributes significantly to the identification and study of botanical remains in (paleo)ecological and archaeological contexts. Traditional identification and classification of phytoliths rely on human experience, and as such, an emerging challenge is to automatically classify them to enhance data homogeneity among researchers worldwide and facilitate reliable comparisons. In the present study, a deep artificial neural network (NN) is implemented under the objective to detect and classify phytoliths, extracted from modern wheat ( Triticum spp.). The proposed methodology is able to recognise four phytolith morphotypes: (a) Stoma, (b) Rondel, (c) Papillate, and (d) Elongate dendritic. For the learning process, a dataset of phytolith photomicrographs was created and allocated to training, validation and testing data groups. Due to the limited size and low diversity of the dataset, an end-to-end encoder-decoder NN architecture is proposed, based on a pre-trained MobileNetV2, utilised for the encoder part and U-net, used for the segmentation stage. After the parameterisation, training and fine-tuning of the proposed architecture, it is capable to classify and localise the four classes of phytoliths in unknown images with high unbiased accuracy, exceeding 90%. The proposed methodology and corresponding dataset are quite promising for building up the capacity of phytolith classification within unfamiliar (geo)archaeological datasets, demonstrating remarkable potential towards automatic phytolith analysis." @default.
- W4360980617 created "2023-03-30" @default.
- W4360980617 creator A5011939439 @default.
- W4360980617 creator A5041917047 @default.
- W4360980617 creator A5059523179 @default.
- W4360980617 date "2023-03-14" @default.
- W4360980617 modified "2023-09-26" @default.
- W4360980617 title "Twenty thousand leagues under plant biominerals: a deep learning implementation for automatic phytolith classification" @default.
- W4360980617 cites W128812734 @default.
- W4360980617 cites W1474297142 @default.
- W4360980617 cites W1901129140 @default.
- W4360980617 cites W1929214948 @default.
- W4360980617 cites W1963878472 @default.
- W4360980617 cites W1970150767 @default.
- W4360980617 cites W1988188227 @default.
- W4360980617 cites W1993012193 @default.
- W4360980617 cites W2008028839 @default.
- W4360980617 cites W2008433405 @default.
- W4360980617 cites W2011992571 @default.
- W4360980617 cites W2022884813 @default.
- W4360980617 cites W2024480381 @default.
- W4360980617 cites W2030048712 @default.
- W4360980617 cites W2031846886 @default.
- W4360980617 cites W2053367199 @default.
- W4360980617 cites W2061929773 @default.
- W4360980617 cites W2064815052 @default.
- W4360980617 cites W2067508713 @default.
- W4360980617 cites W2069785760 @default.
- W4360980617 cites W2069929658 @default.
- W4360980617 cites W2079489862 @default.
- W4360980617 cites W2080096063 @default.
- W4360980617 cites W2103877152 @default.
- W4360980617 cites W2108598243 @default.
- W4360980617 cites W2121943166 @default.
- W4360980617 cites W2149195731 @default.
- W4360980617 cites W2156430891 @default.
- W4360980617 cites W2176038780 @default.
- W4360980617 cites W2199551755 @default.
- W4360980617 cites W2277760447 @default.
- W4360980617 cites W2343514588 @default.
- W4360980617 cites W2416777518 @default.
- W4360980617 cites W2463655828 @default.
- W4360980617 cites W2481011538 @default.
- W4360980617 cites W2555894688 @default.
- W4360980617 cites W2604379824 @default.
- W4360980617 cites W2606671024 @default.
- W4360980617 cites W2619261808 @default.
- W4360980617 cites W2773880625 @default.
- W4360980617 cites W2791989656 @default.
- W4360980617 cites W2796438033 @default.
- W4360980617 cites W2805952037 @default.
- W4360980617 cites W2807181195 @default.
- W4360980617 cites W2904333483 @default.
- W4360980617 cites W2964059016 @default.
- W4360980617 cites W2964098128 @default.
- W4360980617 cites W2995438044 @default.
- W4360980617 cites W3025120268 @default.
- W4360980617 cites W3027598694 @default.
- W4360980617 cites W3030454765 @default.
- W4360980617 cites W3041261935 @default.
- W4360980617 cites W3044792273 @default.
- W4360980617 cites W3049661244 @default.
- W4360980617 cites W3092368001 @default.
- W4360980617 cites W3093458154 @default.
- W4360980617 cites W3105328450 @default.
- W4360980617 cites W3113288879 @default.
- W4360980617 cites W3161147741 @default.
- W4360980617 cites W4200519212 @default.
- W4360980617 cites W4230292448 @default.
- W4360980617 cites W4234574983 @default.
- W4360980617 cites W4241620879 @default.
- W4360980617 cites W4303945557 @default.
- W4360980617 cites W87185627 @default.
- W4360980617 doi "https://doi.org/10.1007/s12145-023-00975-z" @default.
- W4360980617 hasPublicationYear "2023" @default.
- W4360980617 type Work @default.
- W4360980617 citedByCount "0" @default.
- W4360980617 crossrefType "journal-article" @default.
- W4360980617 hasAuthorship W4360980617A5011939439 @default.
- W4360980617 hasAuthorship W4360980617A5041917047 @default.
- W4360980617 hasAuthorship W4360980617A5059523179 @default.
- W4360980617 hasBestOaLocation W43609806171 @default.
- W4360980617 hasConcept C108583219 @default.
- W4360980617 hasConcept C116834253 @default.
- W4360980617 hasConcept C153180895 @default.
- W4360980617 hasConcept C154945302 @default.
- W4360980617 hasConcept C18903297 @default.
- W4360980617 hasConcept C2776240908 @default.
- W4360980617 hasConcept C2780618852 @default.
- W4360980617 hasConcept C41008148 @default.
- W4360980617 hasConcept C50644808 @default.
- W4360980617 hasConcept C86803240 @default.
- W4360980617 hasConcept C89600930 @default.
- W4360980617 hasConceptScore W4360980617C108583219 @default.
- W4360980617 hasConceptScore W4360980617C116834253 @default.
- W4360980617 hasConceptScore W4360980617C153180895 @default.
- W4360980617 hasConceptScore W4360980617C154945302 @default.
- W4360980617 hasConceptScore W4360980617C18903297 @default.