Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360982113> ?p ?o ?g. }
- W4360982113 endingPage "546" @default.
- W4360982113 startingPage "530" @default.
- W4360982113 abstract "Conventionally, the judgment of whether small pulmonary nodules are invasive is mainly made by thoracic surgeons according to the chest computed tomography (CT) features of patients. However, there are limits to how much useful information can be obtained from this approach. A large number of feature information was extracted from CT images by CT radiomics. The machine learning algorithm was used to construct models based on radiomic characteristics to predict the invasiveness of lung adenocarcinoma (LUAD) with a good prediction accuracy.A total of 416 patients with pathologically confirmed preinvasive lesions and LUAD after video-assisted thoracoscopic surgery (VATS) in the Department of Thoracic Surgery of the First People's Hospital of Yunnan Province from February 2020 to February 2022 were retrospectively analyzed. According to random classification, patients were divided into 2 groups. The RadCloud platform was used to extract radiomics features, and the most relevant radiomics features were selected by continuous dimension reduction method. Then, 6 machine learning algorithms were used to establish and verify the prediction model of small lung nodular adenocarcinoma invasiveness. Receiver operating characteristic (ROC) curve and area under curve (AUC) were used to evaluate the predictive performance.There were 78 cases of pre-invasive lesions and 226 cases of invasive lesions in the training group, and 34 cases of pre-invasive lesions and 78 cases of invasive lesions in the validation group. In the training group, the AUC values of the 6 models were all more than 0.914, the 95% confidence interval (CI) was 0.857-1.00, the sensitivity was equal or more than 0.87, and the specificity was equal or more than 0.85. In the validation group, the AUC values of the 6 models were all equal or more than 0.732, the 95% CI was 0.651-1.00, the sensitivity was equal or more than 0.7, and the specificity was more than 0.77.Machine learning algorithms were used to construct models to predict the invasiveness of small nodular LUAD based on radiomics features, which it could provide more evidence for doctors to make diagnoses and more personalized treatment plans for patients." @default.
- W4360982113 created "2023-03-30" @default.
- W4360982113 creator A5011729992 @default.
- W4360982113 creator A5026808603 @default.
- W4360982113 creator A5027991516 @default.
- W4360982113 creator A5030093006 @default.
- W4360982113 creator A5030921116 @default.
- W4360982113 creator A5032396875 @default.
- W4360982113 creator A5051346785 @default.
- W4360982113 creator A5055560750 @default.
- W4360982113 creator A5063195311 @default.
- W4360982113 creator A5082859400 @default.
- W4360982113 creator A5088385429 @default.
- W4360982113 date "2023-03-01" @default.
- W4360982113 modified "2023-09-30" @default.
- W4360982113 title "The predictive accuracy of CT radiomics combined with machine learning in predicting the invasiveness of small nodular lung adenocarcinoma" @default.
- W4360982113 cites W1942932896 @default.
- W4360982113 cites W2024492396 @default.
- W4360982113 cites W2128739912 @default.
- W4360982113 cites W2553191729 @default.
- W4360982113 cites W2796573946 @default.
- W4360982113 cites W2800631768 @default.
- W4360982113 cites W2801602330 @default.
- W4360982113 cites W2806191962 @default.
- W4360982113 cites W2808024129 @default.
- W4360982113 cites W2911691678 @default.
- W4360982113 cites W2911831872 @default.
- W4360982113 cites W2939205828 @default.
- W4360982113 cites W2944540239 @default.
- W4360982113 cites W2951465618 @default.
- W4360982113 cites W2954533854 @default.
- W4360982113 cites W2985928856 @default.
- W4360982113 cites W3003526695 @default.
- W4360982113 cites W3010662565 @default.
- W4360982113 cites W3014643176 @default.
- W4360982113 cites W3020374319 @default.
- W4360982113 cites W3022040190 @default.
- W4360982113 cites W3023668271 @default.
- W4360982113 cites W3031635948 @default.
- W4360982113 cites W3048160945 @default.
- W4360982113 cites W3088490404 @default.
- W4360982113 cites W3090705710 @default.
- W4360982113 cites W3103364053 @default.
- W4360982113 cites W3135485367 @default.
- W4360982113 cites W3135534044 @default.
- W4360982113 cites W3141984075 @default.
- W4360982113 cites W3175695765 @default.
- W4360982113 cites W3178036972 @default.
- W4360982113 cites W3214369157 @default.
- W4360982113 cites W3215171600 @default.
- W4360982113 cites W3215921195 @default.
- W4360982113 cites W4200135700 @default.
- W4360982113 cites W4206087433 @default.
- W4360982113 cites W4214507690 @default.
- W4360982113 cites W4214843501 @default.
- W4360982113 cites W4214930488 @default.
- W4360982113 cites W4224028536 @default.
- W4360982113 cites W4225330634 @default.
- W4360982113 cites W4229332535 @default.
- W4360982113 cites W4288723188 @default.
- W4360982113 cites W4293574844 @default.
- W4360982113 cites W4294363604 @default.
- W4360982113 cites W4310812607 @default.
- W4360982113 cites W4319063762 @default.
- W4360982113 doi "https://doi.org/10.21037/tlcr-23-82" @default.
- W4360982113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37057108" @default.
- W4360982113 hasPublicationYear "2023" @default.
- W4360982113 type Work @default.
- W4360982113 citedByCount "1" @default.
- W4360982113 countsByYear W43609821132023 @default.
- W4360982113 crossrefType "journal-article" @default.
- W4360982113 hasAuthorship W4360982113A5011729992 @default.
- W4360982113 hasAuthorship W4360982113A5026808603 @default.
- W4360982113 hasAuthorship W4360982113A5027991516 @default.
- W4360982113 hasAuthorship W4360982113A5030093006 @default.
- W4360982113 hasAuthorship W4360982113A5030921116 @default.
- W4360982113 hasAuthorship W4360982113A5032396875 @default.
- W4360982113 hasAuthorship W4360982113A5051346785 @default.
- W4360982113 hasAuthorship W4360982113A5055560750 @default.
- W4360982113 hasAuthorship W4360982113A5063195311 @default.
- W4360982113 hasAuthorship W4360982113A5082859400 @default.
- W4360982113 hasAuthorship W4360982113A5088385429 @default.
- W4360982113 hasBestOaLocation W43609821131 @default.
- W4360982113 hasConcept C121608353 @default.
- W4360982113 hasConcept C126322002 @default.
- W4360982113 hasConcept C126838900 @default.
- W4360982113 hasConcept C2777714996 @default.
- W4360982113 hasConcept C2778559731 @default.
- W4360982113 hasConcept C2781182431 @default.
- W4360982113 hasConcept C44249647 @default.
- W4360982113 hasConcept C544519230 @default.
- W4360982113 hasConcept C58471807 @default.
- W4360982113 hasConcept C71924100 @default.
- W4360982113 hasConceptScore W4360982113C121608353 @default.
- W4360982113 hasConceptScore W4360982113C126322002 @default.
- W4360982113 hasConceptScore W4360982113C126838900 @default.
- W4360982113 hasConceptScore W4360982113C2777714996 @default.
- W4360982113 hasConceptScore W4360982113C2778559731 @default.