Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360982802> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4360982802 endingPage "33" @default.
- W4360982802 startingPage "25" @default.
- W4360982802 abstract "Diabetes is a metabolic disorder that affects a large amount of people globally. Among diabetic disorders, diabetes mellitus is the most common ailment. Currently, while treating diabetes, hospitals gather required facts via suitable medical tests and appropriate treatment is administered primarily based on prognosis. Early detection of diabetes is important to prevent diabetes from progressing into a chronic illness. Machine learning helps to identify and predict diabetic even at beginning stage. An ensemble machine learning technique helps to get better classification and higher accuracy to predict from diabetic data set. Different voting classifier techniques are present for ensemble machine learning. The present paper proposes a suitable voting classifier for diabetic classification that can be used to predict diabetes with better accuracy. Analysis of the obtained results, show that hard-voting method provides greater accuracy than soft-voting method, the three diabetes data sets used for the study. Implementation is done by applying ML algorithms on three different diabetes data sets obtained from various repositories. ML-algorithms like Logistic Regression, Ada Boost, Decision Tree, Cat Boost, Naïve Bayes, SVM, XG Boost, RF, KNN, MLP, Bagging Classifier, and Gradient Boost Classifier are used." @default.
- W4360982802 created "2023-03-30" @default.
- W4360982802 creator A5019627436 @default.
- W4360982802 creator A5021770106 @default.
- W4360982802 creator A5053869344 @default.
- W4360982802 creator A5077443231 @default.
- W4360982802 creator A5083852540 @default.
- W4360982802 date "2023-01-01" @default.
- W4360982802 modified "2023-10-14" @default.
- W4360982802 title "Finding Best Voting Classifier for Diabetic Disease Classification" @default.
- W4360982802 cites W1552361477 @default.
- W4360982802 cites W2569214105 @default.
- W4360982802 cites W2806534322 @default.
- W4360982802 cites W2886435121 @default.
- W4360982802 cites W2899195433 @default.
- W4360982802 cites W2938285755 @default.
- W4360982802 cites W2997738053 @default.
- W4360982802 cites W3098522193 @default.
- W4360982802 doi "https://doi.org/10.1007/978-3-031-27622-4_3" @default.
- W4360982802 hasPublicationYear "2023" @default.
- W4360982802 type Work @default.
- W4360982802 citedByCount "0" @default.
- W4360982802 crossrefType "book-chapter" @default.
- W4360982802 hasAuthorship W4360982802A5019627436 @default.
- W4360982802 hasAuthorship W4360982802A5021770106 @default.
- W4360982802 hasAuthorship W4360982802A5053869344 @default.
- W4360982802 hasAuthorship W4360982802A5077443231 @default.
- W4360982802 hasAuthorship W4360982802A5083852540 @default.
- W4360982802 hasConcept C119857082 @default.
- W4360982802 hasConcept C12267149 @default.
- W4360982802 hasConcept C134018914 @default.
- W4360982802 hasConcept C151956035 @default.
- W4360982802 hasConcept C153180895 @default.
- W4360982802 hasConcept C153668964 @default.
- W4360982802 hasConcept C154945302 @default.
- W4360982802 hasConcept C17744445 @default.
- W4360982802 hasConcept C199539241 @default.
- W4360982802 hasConcept C41008148 @default.
- W4360982802 hasConcept C45942800 @default.
- W4360982802 hasConcept C52001869 @default.
- W4360982802 hasConcept C520049643 @default.
- W4360982802 hasConcept C52620605 @default.
- W4360982802 hasConcept C555293320 @default.
- W4360982802 hasConcept C71924100 @default.
- W4360982802 hasConcept C84525736 @default.
- W4360982802 hasConcept C94625758 @default.
- W4360982802 hasConcept C95623464 @default.
- W4360982802 hasConceptScore W4360982802C119857082 @default.
- W4360982802 hasConceptScore W4360982802C12267149 @default.
- W4360982802 hasConceptScore W4360982802C134018914 @default.
- W4360982802 hasConceptScore W4360982802C151956035 @default.
- W4360982802 hasConceptScore W4360982802C153180895 @default.
- W4360982802 hasConceptScore W4360982802C153668964 @default.
- W4360982802 hasConceptScore W4360982802C154945302 @default.
- W4360982802 hasConceptScore W4360982802C17744445 @default.
- W4360982802 hasConceptScore W4360982802C199539241 @default.
- W4360982802 hasConceptScore W4360982802C41008148 @default.
- W4360982802 hasConceptScore W4360982802C45942800 @default.
- W4360982802 hasConceptScore W4360982802C52001869 @default.
- W4360982802 hasConceptScore W4360982802C520049643 @default.
- W4360982802 hasConceptScore W4360982802C52620605 @default.
- W4360982802 hasConceptScore W4360982802C555293320 @default.
- W4360982802 hasConceptScore W4360982802C71924100 @default.
- W4360982802 hasConceptScore W4360982802C84525736 @default.
- W4360982802 hasConceptScore W4360982802C94625758 @default.
- W4360982802 hasConceptScore W4360982802C95623464 @default.
- W4360982802 hasLocation W43609828021 @default.
- W4360982802 hasOpenAccess W4360982802 @default.
- W4360982802 hasPrimaryLocation W43609828021 @default.
- W4360982802 hasRelatedWork W2461076337 @default.
- W4360982802 hasRelatedWork W3098749638 @default.
- W4360982802 hasRelatedWork W3107332377 @default.
- W4360982802 hasRelatedWork W3127425528 @default.
- W4360982802 hasRelatedWork W3185713307 @default.
- W4360982802 hasRelatedWork W4205958290 @default.
- W4360982802 hasRelatedWork W4214820172 @default.
- W4360982802 hasRelatedWork W4281846282 @default.
- W4360982802 hasRelatedWork W4283016678 @default.
- W4360982802 hasRelatedWork W4293069612 @default.
- W4360982802 isParatext "false" @default.
- W4360982802 isRetracted "false" @default.
- W4360982802 workType "book-chapter" @default.