Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360983726> ?p ?o ?g. }
- W4360983726 endingPage "108457" @default.
- W4360983726 startingPage "108457" @default.
- W4360983726 abstract "Genetic variations are one of the major causes of phenotypic variations between human individuals. Although beneficial as being the substrate of evolution, germline mutations may cause diseases, including Mendelian diseases and complex diseases such as diabetes and heart diseases. Mutations occurring in somatic cells are a main cause of cancer and likely cause age-related phenotypes and other age-related diseases. Because of the high abundance of genetic variations in the human genome, i.e., millions of germline variations per human subject and thousands of additional somatic mutations per cell, it is technically challenging to experimentally verify the function of every possible mutation and their interactions. Significant progress has been made to solve this problem using computational approaches, especially machine learning (ML). Here, we review the progress and achievements made in recent years in this field of research. We classify the computational models in two ways: one according to their prediction goals including protein structural alterations, gene expression changes, and disease risks, and the other according to their methodologies, including non-machine learning methods, classical machine learning methods, and deep neural network methods. For models in each category, we discuss their architecture, prediction accuracy, and potential limitations. This review provides new insights into the applications and future directions of computational approaches in understanding the role of mutations in aging and disease." @default.
- W4360983726 created "2023-03-30" @default.
- W4360983726 creator A5023461522 @default.
- W4360983726 creator A5027757409 @default.
- W4360983726 creator A5071798264 @default.
- W4360983726 creator A5080405489 @default.
- W4360983726 date "2023-01-01" @default.
- W4360983726 modified "2023-10-14" @default.
- W4360983726 title "Predicting mutational function using machine learning" @default.
- W4360983726 cites W1976005460 @default.
- W4360983726 cites W1981132436 @default.
- W4360983726 cites W1985818354 @default.
- W4360983726 cites W2007203150 @default.
- W4360983726 cites W2016964194 @default.
- W4360983726 cites W2020331089 @default.
- W4360983726 cites W2022761661 @default.
- W4360983726 cites W2045777307 @default.
- W4360983726 cites W2047072910 @default.
- W4360983726 cites W2057289558 @default.
- W4360983726 cites W2059145105 @default.
- W4360983726 cites W2060075610 @default.
- W4360983726 cites W2063916063 @default.
- W4360983726 cites W2065921821 @default.
- W4360983726 cites W2072572998 @default.
- W4360983726 cites W2079928393 @default.
- W4360983726 cites W2083502443 @default.
- W4360983726 cites W2084160423 @default.
- W4360983726 cites W2092006899 @default.
- W4360983726 cites W2099672241 @default.
- W4360983726 cites W2116087481 @default.
- W4360983726 cites W2119423166 @default.
- W4360983726 cites W2130027818 @default.
- W4360983726 cites W2137886330 @default.
- W4360983726 cites W2138551420 @default.
- W4360983726 cites W2143238378 @default.
- W4360983726 cites W2148105023 @default.
- W4360983726 cites W2159522138 @default.
- W4360983726 cites W2160938004 @default.
- W4360983726 cites W2160995259 @default.
- W4360983726 cites W2198606573 @default.
- W4360983726 cites W2245592118 @default.
- W4360983726 cites W2284827612 @default.
- W4360983726 cites W2345512687 @default.
- W4360983726 cites W2439991713 @default.
- W4360983726 cites W2521967673 @default.
- W4360983726 cites W2557595285 @default.
- W4360983726 cites W2559028527 @default.
- W4360983726 cites W2582236637 @default.
- W4360983726 cites W2595351638 @default.
- W4360983726 cites W2774216375 @default.
- W4360983726 cites W2774506962 @default.
- W4360983726 cites W2801491392 @default.
- W4360983726 cites W2883945062 @default.
- W4360983726 cites W2898210859 @default.
- W4360983726 cites W2913421577 @default.
- W4360983726 cites W2949632023 @default.
- W4360983726 cites W2952239877 @default.
- W4360983726 cites W2953103783 @default.
- W4360983726 cites W2983394854 @default.
- W4360983726 cites W3000982932 @default.
- W4360983726 cites W3003287673 @default.
- W4360983726 cites W3015602557 @default.
- W4360983726 cites W3037601773 @default.
- W4360983726 cites W3162614523 @default.
- W4360983726 cites W3177828909 @default.
- W4360983726 cites W3189676628 @default.
- W4360983726 cites W3191418446 @default.
- W4360983726 cites W3203588026 @default.
- W4360983726 cites W3204567831 @default.
- W4360983726 cites W3209435229 @default.
- W4360983726 cites W4214812894 @default.
- W4360983726 cites W4223463067 @default.
- W4360983726 cites W4226178321 @default.
- W4360983726 doi "https://doi.org/10.1016/j.mrrev.2023.108457" @default.
- W4360983726 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36965820" @default.
- W4360983726 hasPublicationYear "2023" @default.
- W4360983726 type Work @default.
- W4360983726 citedByCount "0" @default.
- W4360983726 crossrefType "journal-article" @default.
- W4360983726 hasAuthorship W4360983726A5023461522 @default.
- W4360983726 hasAuthorship W4360983726A5027757409 @default.
- W4360983726 hasAuthorship W4360983726A5071798264 @default.
- W4360983726 hasAuthorship W4360983726A5080405489 @default.
- W4360983726 hasConcept C104317684 @default.
- W4360983726 hasConcept C108583219 @default.
- W4360983726 hasConcept C119857082 @default.
- W4360983726 hasConcept C13514818 @default.
- W4360983726 hasConcept C142724271 @default.
- W4360983726 hasConcept C154945302 @default.
- W4360983726 hasConcept C175783326 @default.
- W4360983726 hasConcept C2779134260 @default.
- W4360983726 hasConcept C41008148 @default.
- W4360983726 hasConcept C501734568 @default.
- W4360983726 hasConcept C54355233 @default.
- W4360983726 hasConcept C70721500 @default.
- W4360983726 hasConcept C71924100 @default.
- W4360983726 hasConcept C86803240 @default.
- W4360983726 hasConceptScore W4360983726C104317684 @default.