Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360985654> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4360985654 endingPage "35" @default.
- W4360985654 startingPage "19" @default.
- W4360985654 abstract "Multivariate Time Series (MTS) involve multiple time series variables that are interdependent. The MTS follows two dimensions, namely spatial along the different variables composing the MTS and temporal. Both, the complex and the time-evolving nature of MTS data make forecasting one of the most challenging tasks in time series analysis. Typical methods for MTS forecasting are designed to operate in a static manner in time or space without taking into account the evolution of spatio-temporal dependencies among data observations, which may be subject to significant changes. Moreover, it is generally accepted that none of these methods is universally valid for every application. Therefore, we propose an online adaptation of MTS forecasting by devising a fully automated framework for both adaptive input spatio-temporal variables and adequate forecasting model selection. The adaptation is performed in an informed manner following concept-drift detection in both spatio-temporal dependencies and model performance over time. In addition, a well-designed meta-learning scheme is used to automate the selection of appropriate dependence measures and the forecasting model. An extensive empirical study on several real-world datasets shows that our method achieves excellent or on-par results in comparison to the state-of-the-art (SoA) approaches as well as several baselines." @default.
- W4360985654 created "2023-03-30" @default.
- W4360985654 creator A5022458135 @default.
- W4360985654 creator A5065328227 @default.
- W4360985654 creator A5075574121 @default.
- W4360985654 date "2023-01-01" @default.
- W4360985654 modified "2023-09-26" @default.
- W4360985654 title "Online Adaptive Multivariate Time Series Forecasting" @default.
- W4360985654 cites W1678356000 @default.
- W4360985654 cites W1894414046 @default.
- W4360985654 cites W2000285770 @default.
- W4360985654 cites W2091886411 @default.
- W4360985654 cites W2099419573 @default.
- W4360985654 cites W2278984902 @default.
- W4360985654 cites W2904765547 @default.
- W4360985654 cites W2943921667 @default.
- W4360985654 cites W2963313894 @default.
- W4360985654 cites W2963922828 @default.
- W4360985654 cites W2995015263 @default.
- W4360985654 cites W3023743538 @default.
- W4360985654 cites W3080253043 @default.
- W4360985654 cites W3199342215 @default.
- W4360985654 cites W4212883601 @default.
- W4360985654 doi "https://doi.org/10.1007/978-3-031-26422-1_2" @default.
- W4360985654 hasPublicationYear "2023" @default.
- W4360985654 type Work @default.
- W4360985654 citedByCount "0" @default.
- W4360985654 crossrefType "book-chapter" @default.
- W4360985654 hasAuthorship W4360985654A5022458135 @default.
- W4360985654 hasAuthorship W4360985654A5065328227 @default.
- W4360985654 hasAuthorship W4360985654A5075574121 @default.
- W4360985654 hasConcept C119857082 @default.
- W4360985654 hasConcept C120665830 @default.
- W4360985654 hasConcept C121332964 @default.
- W4360985654 hasConcept C124101348 @default.
- W4360985654 hasConcept C139807058 @default.
- W4360985654 hasConcept C143724316 @default.
- W4360985654 hasConcept C151406439 @default.
- W4360985654 hasConcept C151730666 @default.
- W4360985654 hasConcept C154945302 @default.
- W4360985654 hasConcept C161584116 @default.
- W4360985654 hasConcept C41008148 @default.
- W4360985654 hasConcept C60777511 @default.
- W4360985654 hasConcept C81917197 @default.
- W4360985654 hasConcept C86803240 @default.
- W4360985654 hasConcept C89198739 @default.
- W4360985654 hasConceptScore W4360985654C119857082 @default.
- W4360985654 hasConceptScore W4360985654C120665830 @default.
- W4360985654 hasConceptScore W4360985654C121332964 @default.
- W4360985654 hasConceptScore W4360985654C124101348 @default.
- W4360985654 hasConceptScore W4360985654C139807058 @default.
- W4360985654 hasConceptScore W4360985654C143724316 @default.
- W4360985654 hasConceptScore W4360985654C151406439 @default.
- W4360985654 hasConceptScore W4360985654C151730666 @default.
- W4360985654 hasConceptScore W4360985654C154945302 @default.
- W4360985654 hasConceptScore W4360985654C161584116 @default.
- W4360985654 hasConceptScore W4360985654C41008148 @default.
- W4360985654 hasConceptScore W4360985654C60777511 @default.
- W4360985654 hasConceptScore W4360985654C81917197 @default.
- W4360985654 hasConceptScore W4360985654C86803240 @default.
- W4360985654 hasConceptScore W4360985654C89198739 @default.
- W4360985654 hasLocation W43609856541 @default.
- W4360985654 hasOpenAccess W4360985654 @default.
- W4360985654 hasPrimaryLocation W43609856541 @default.
- W4360985654 hasRelatedWork W189280425 @default.
- W4360985654 hasRelatedWork W2061542064 @default.
- W4360985654 hasRelatedWork W2153291261 @default.
- W4360985654 hasRelatedWork W2350758509 @default.
- W4360985654 hasRelatedWork W2375884488 @default.
- W4360985654 hasRelatedWork W2752018578 @default.
- W4360985654 hasRelatedWork W2776931564 @default.
- W4360985654 hasRelatedWork W4285420330 @default.
- W4360985654 hasRelatedWork W4309045103 @default.
- W4360985654 hasRelatedWork W4361011496 @default.
- W4360985654 isParatext "false" @default.
- W4360985654 isRetracted "false" @default.
- W4360985654 workType "book-chapter" @default.