Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360992173> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4360992173 abstract "Abstract Medical image segmentation is essential for disease diagnosis and for support- ing medical decision systems. Automatic segmentation of brain tumors from Magnetic Resonance Imaging (MRI) is crucial for treatment planning and timely diagnosis. Due to the enormous amount of data that MRI provides as well as the variability in the location and size of the tumor, automatic seg- mentation is a difficult process. Consequently, a current outstanding problem in the field of deep learning-based medical image analysis is the development of an accurate and trustworthy way to separate the tumorous region from healthy tissues. In this paper, we propose a novel 3D Attention U-Net with dense encoder blocks and residual decoder blocks, which combines the bene- fits of both DenseNet and ResNet. Dense blocks with transition layers help to strengthen feature propagation, reduce vanishing gradient, and increase the receptive field. Because each layer receives feature maps from all previous layers, the network can be made thinner and more compact. To make predic- tions, it considers both low-level and high-level features at the same time. In addition, shortcut connections between the residual network are used to pre- serve low-level features at each level. As part of the proposed architecture, skip connections between dense and residual blocks are utilized along with an attention layer to speed up the training process. The proposed architecture was trained and validated using BraTS 2020 dataset, it showed promising results with dice scores of 0.866, 0.889, and 0.828 for the tumor core (TC), whole tumor (WT), and enhancing tumor (ET), respectively. In compar- ison to the original 3D U-Net, our approach performs better. According to the findings of our experiment, our approach is a competitive automatic brain tumor segmentation method when compared to some state-of-the-art techniques." @default.
- W4360992173 created "2023-03-30" @default.
- W4360992173 creator A5023542926 @default.
- W4360992173 creator A5036646918 @default.
- W4360992173 creator A5052116786 @default.
- W4360992173 date "2023-03-27" @default.
- W4360992173 modified "2023-09-25" @default.
- W4360992173 title "Mutltimodal MRI Brain Tumor Segmentation using 3D Attention UNet with Dense Encoder Blocks and Residual Decoder Blocks" @default.
- W4360992173 cites W1641498739 @default.
- W4360992173 cites W2006239889 @default.
- W4360992173 cites W2031223143 @default.
- W4360992173 cites W2036885187 @default.
- W4360992173 cites W2098765040 @default.
- W4360992173 cites W2123498585 @default.
- W4360992173 cites W2132358780 @default.
- W4360992173 cites W2144133758 @default.
- W4360992173 cites W2149373586 @default.
- W4360992173 cites W2150654863 @default.
- W4360992173 cites W2778283729 @default.
- W4360992173 cites W2906663373 @default.
- W4360992173 cites W2911558038 @default.
- W4360992173 cites W2911964244 @default.
- W4360992173 cites W2979754953 @default.
- W4360992173 cites W3042445013 @default.
- W4360992173 cites W3043636152 @default.
- W4360992173 cites W3107194210 @default.
- W4360992173 cites W3185297234 @default.
- W4360992173 cites W3203841574 @default.
- W4360992173 cites W4282839986 @default.
- W4360992173 doi "https://doi.org/10.21203/rs.3.rs-2717573/v1" @default.
- W4360992173 hasPublicationYear "2023" @default.
- W4360992173 type Work @default.
- W4360992173 citedByCount "0" @default.
- W4360992173 crossrefType "posted-content" @default.
- W4360992173 hasAuthorship W4360992173A5023542926 @default.
- W4360992173 hasAuthorship W4360992173A5036646918 @default.
- W4360992173 hasAuthorship W4360992173A5052116786 @default.
- W4360992173 hasBestOaLocation W43609921731 @default.
- W4360992173 hasConcept C108583219 @default.
- W4360992173 hasConcept C111919701 @default.
- W4360992173 hasConcept C11413529 @default.
- W4360992173 hasConcept C118505674 @default.
- W4360992173 hasConcept C124504099 @default.
- W4360992173 hasConcept C138885662 @default.
- W4360992173 hasConcept C153180895 @default.
- W4360992173 hasConcept C154945302 @default.
- W4360992173 hasConcept C155512373 @default.
- W4360992173 hasConcept C2776401178 @default.
- W4360992173 hasConcept C2944601119 @default.
- W4360992173 hasConcept C31972630 @default.
- W4360992173 hasConcept C41008148 @default.
- W4360992173 hasConcept C41895202 @default.
- W4360992173 hasConcept C89600930 @default.
- W4360992173 hasConcept C98045186 @default.
- W4360992173 hasConceptScore W4360992173C108583219 @default.
- W4360992173 hasConceptScore W4360992173C111919701 @default.
- W4360992173 hasConceptScore W4360992173C11413529 @default.
- W4360992173 hasConceptScore W4360992173C118505674 @default.
- W4360992173 hasConceptScore W4360992173C124504099 @default.
- W4360992173 hasConceptScore W4360992173C138885662 @default.
- W4360992173 hasConceptScore W4360992173C153180895 @default.
- W4360992173 hasConceptScore W4360992173C154945302 @default.
- W4360992173 hasConceptScore W4360992173C155512373 @default.
- W4360992173 hasConceptScore W4360992173C2776401178 @default.
- W4360992173 hasConceptScore W4360992173C2944601119 @default.
- W4360992173 hasConceptScore W4360992173C31972630 @default.
- W4360992173 hasConceptScore W4360992173C41008148 @default.
- W4360992173 hasConceptScore W4360992173C41895202 @default.
- W4360992173 hasConceptScore W4360992173C89600930 @default.
- W4360992173 hasConceptScore W4360992173C98045186 @default.
- W4360992173 hasLocation W43609921731 @default.
- W4360992173 hasOpenAccess W4360992173 @default.
- W4360992173 hasPrimaryLocation W43609921731 @default.
- W4360992173 hasRelatedWork W1507266234 @default.
- W4360992173 hasRelatedWork W1669643531 @default.
- W4360992173 hasRelatedWork W2110230079 @default.
- W4360992173 hasRelatedWork W2117664411 @default.
- W4360992173 hasRelatedWork W2117933325 @default.
- W4360992173 hasRelatedWork W2122581818 @default.
- W4360992173 hasRelatedWork W2159066190 @default.
- W4360992173 hasRelatedWork W2739874619 @default.
- W4360992173 hasRelatedWork W2948658236 @default.
- W4360992173 hasRelatedWork W1967061043 @default.
- W4360992173 isParatext "false" @default.
- W4360992173 isRetracted "false" @default.
- W4360992173 workType "article" @default.