Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360992207> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4360992207 abstract "Abstract Background: A direct consequence of global warming, and strongly correlated with poor physical and mental health, food insecurity is a rising global concern associated with low dietary intake. The Coronavirus pandemic has further aggravated food insecurity among vulnerable communities, and thus has sparked the global conversation of equal food access, food distribution, and improvement of food support programs. This research was designed to identify the key features associated with food insecurity during the COVID-19 pandemic using Machine learning techniques. Seven machine learning algorithms were used in the model, which used a dataset of 32 features. The model was designed to predict food insecurity across ten Arab countries in the Gulf and Mediterranean regions. A total of 13,443 participants were extracted from the international Corona Cooking Survey conducted by 38 different countries during the COVID -19 pandemic. Results: The findings indicate that Jordanian, Palestinian, Lebanese, and Saudi Arabian respondents reported the highest rates of food insecurity in the region (15.4%,13.7%,13.7% and 11.3% respectively). On the other hand, Oman and Bahrain reported the lowest rates (5.4% and 5.5% respectively). Our model obtained accuracy levels of 70%-82% in all algorithms. Gradient Boosting and Random Forest techniques had the highest performance levels in predicting food insecurity (82% and 80% respectively). Place of residence, age, financial instability, difficulties in accessing food, and depression were found to be the most relevant features associated with food insecurity. Conclusions: Overall, ML algorithms seem to be an effective method in early detection and prediction of food insecurity. Future research would benefit from utilizing the proposed model in developing more complex and accurate models aiming to enhance granularity, with the ability to share data, to incorporate wide range of variables, and to make use of automation for effective prevention and intervention programs at the regional and individual levels." @default.
- W4360992207 created "2023-03-30" @default.
- W4360992207 creator A5009666570 @default.
- W4360992207 creator A5017950301 @default.
- W4360992207 creator A5033310055 @default.
- W4360992207 creator A5035617140 @default.
- W4360992207 creator A5049435686 @default.
- W4360992207 creator A5058939784 @default.
- W4360992207 creator A5060584165 @default.
- W4360992207 creator A5061499994 @default.
- W4360992207 creator A5062174036 @default.
- W4360992207 creator A5065912042 @default.
- W4360992207 creator A5084977464 @default.
- W4360992207 creator A5091233639 @default.
- W4360992207 creator A5091794375 @default.
- W4360992207 date "2023-03-27" @default.
- W4360992207 modified "2023-09-26" @default.
- W4360992207 title "Machine Learning Techniques for the Identification of Risk Factors Associated with Food Insecurity among Adults in Arab countries during the COVID-19 Pandemic" @default.
- W4360992207 cites W1509998372 @default.
- W4360992207 cites W1968494495 @default.
- W4360992207 cites W2085320147 @default.
- W4360992207 cites W2118056767 @default.
- W4360992207 cites W2120689760 @default.
- W4360992207 cites W2903869220 @default.
- W4360992207 cites W2978493136 @default.
- W4360992207 cites W3003951157 @default.
- W4360992207 cites W3093350841 @default.
- W4360992207 cites W3197422533 @default.
- W4360992207 cites W3214898490 @default.
- W4360992207 doi "https://doi.org/10.21203/rs.3.rs-2545270/v1" @default.
- W4360992207 hasPublicationYear "2023" @default.
- W4360992207 type Work @default.
- W4360992207 citedByCount "0" @default.
- W4360992207 crossrefType "posted-content" @default.
- W4360992207 hasAuthorship W4360992207A5009666570 @default.
- W4360992207 hasAuthorship W4360992207A5017950301 @default.
- W4360992207 hasAuthorship W4360992207A5033310055 @default.
- W4360992207 hasAuthorship W4360992207A5035617140 @default.
- W4360992207 hasAuthorship W4360992207A5049435686 @default.
- W4360992207 hasAuthorship W4360992207A5058939784 @default.
- W4360992207 hasAuthorship W4360992207A5060584165 @default.
- W4360992207 hasAuthorship W4360992207A5061499994 @default.
- W4360992207 hasAuthorship W4360992207A5062174036 @default.
- W4360992207 hasAuthorship W4360992207A5065912042 @default.
- W4360992207 hasAuthorship W4360992207A5084977464 @default.
- W4360992207 hasAuthorship W4360992207A5091233639 @default.
- W4360992207 hasAuthorship W4360992207A5091794375 @default.
- W4360992207 hasBestOaLocation W43609922071 @default.
- W4360992207 hasConcept C118518473 @default.
- W4360992207 hasConcept C142724271 @default.
- W4360992207 hasConcept C15744967 @default.
- W4360992207 hasConcept C166957645 @default.
- W4360992207 hasConcept C205649164 @default.
- W4360992207 hasConcept C2778589402 @default.
- W4360992207 hasConcept C2779134260 @default.
- W4360992207 hasConcept C2993342163 @default.
- W4360992207 hasConcept C3008058167 @default.
- W4360992207 hasConcept C524204448 @default.
- W4360992207 hasConcept C549605437 @default.
- W4360992207 hasConcept C71924100 @default.
- W4360992207 hasConcept C89623803 @default.
- W4360992207 hasConcept C99454951 @default.
- W4360992207 hasConceptScore W4360992207C118518473 @default.
- W4360992207 hasConceptScore W4360992207C142724271 @default.
- W4360992207 hasConceptScore W4360992207C15744967 @default.
- W4360992207 hasConceptScore W4360992207C166957645 @default.
- W4360992207 hasConceptScore W4360992207C205649164 @default.
- W4360992207 hasConceptScore W4360992207C2778589402 @default.
- W4360992207 hasConceptScore W4360992207C2779134260 @default.
- W4360992207 hasConceptScore W4360992207C2993342163 @default.
- W4360992207 hasConceptScore W4360992207C3008058167 @default.
- W4360992207 hasConceptScore W4360992207C524204448 @default.
- W4360992207 hasConceptScore W4360992207C549605437 @default.
- W4360992207 hasConceptScore W4360992207C71924100 @default.
- W4360992207 hasConceptScore W4360992207C89623803 @default.
- W4360992207 hasConceptScore W4360992207C99454951 @default.
- W4360992207 hasLocation W43609922071 @default.
- W4360992207 hasOpenAccess W4360992207 @default.
- W4360992207 hasPrimaryLocation W43609922071 @default.
- W4360992207 hasRelatedWork W1889176997 @default.
- W4360992207 hasRelatedWork W2010057883 @default.
- W4360992207 hasRelatedWork W2070014296 @default.
- W4360992207 hasRelatedWork W2344456545 @default.
- W4360992207 hasRelatedWork W2748952813 @default.
- W4360992207 hasRelatedWork W2775266579 @default.
- W4360992207 hasRelatedWork W2899084033 @default.
- W4360992207 hasRelatedWork W3140220066 @default.
- W4360992207 hasRelatedWork W3205880797 @default.
- W4360992207 hasRelatedWork W4309832768 @default.
- W4360992207 isParatext "false" @default.
- W4360992207 isRetracted "false" @default.
- W4360992207 workType "article" @default.