Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360993674> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4360993674 endingPage "47939" @default.
- W4360993674 startingPage "47930" @default.
- W4360993674 abstract "With the construction of the modern power system, power load forecasting is significant to keep the electric Internet of Things in operation. However, it usually needs to collect massive power load data on the server and may face the problem of privacy leakage of raw data. Federated learning can enhance the privacy of the raw power load data of clients by frequently transmitting model updates. Concerning the increasing communication burden of resource-heterogeneous clients resulting from frequent communication with the server, a communication-efficient federated learning algorithm based on Compressed Model Updates and Lazy uploAd (CMULA-FL) was proposed to reduce the communication cost. CMULA-FL also integrates the error compensation strategy to improve the model utility. First, the compression operator is used to compress the transmitted model updates, of which large norms are uploaded to reduce the communication cost of each epoch and transmission frequency. Second, by measuring the error of compression and lazy upload, the error is accumulated to the next epoch to improve the model utility. Finally, based on simulation experiments on the benchmark power load data, the results show that the communication cost decreases at least 60% with controlled loss of model prediction compared with baseline." @default.
- W4360993674 created "2023-03-30" @default.
- W4360993674 creator A5020209060 @default.
- W4360993674 creator A5033747658 @default.
- W4360993674 creator A5035186807 @default.
- W4360993674 creator A5048503470 @default.
- W4360993674 creator A5065859286 @default.
- W4360993674 creator A5077678811 @default.
- W4360993674 date "2023-01-01" @default.
- W4360993674 modified "2023-09-25" @default.
- W4360993674 title "Communication-Efficient Federated Learning for Power Load Forecasting in Electric IoTs" @default.
- W4360993674 cites W2566050141 @default.
- W4360993674 cites W2805797750 @default.
- W4360993674 cites W2922329508 @default.
- W4360993674 cites W2963422046 @default.
- W4360993674 cites W2966596893 @default.
- W4360993674 cites W3007607795 @default.
- W4360993674 cites W3040114327 @default.
- W4360993674 cites W3045941597 @default.
- W4360993674 cites W3093828967 @default.
- W4360993674 cites W3109572624 @default.
- W4360993674 cites W3110538917 @default.
- W4360993674 cites W3123003003 @default.
- W4360993674 cites W3179327475 @default.
- W4360993674 cites W3210894148 @default.
- W4360993674 cites W3211338353 @default.
- W4360993674 cites W3214919557 @default.
- W4360993674 cites W4200303078 @default.
- W4360993674 cites W4205623635 @default.
- W4360993674 cites W4211124002 @default.
- W4360993674 cites W4220961705 @default.
- W4360993674 cites W4224227775 @default.
- W4360993674 cites W4285722492 @default.
- W4360993674 cites W4287729878 @default.
- W4360993674 cites W4308585989 @default.
- W4360993674 cites W4312591215 @default.
- W4360993674 doi "https://doi.org/10.1109/access.2023.3262171" @default.
- W4360993674 hasPublicationYear "2023" @default.
- W4360993674 type Work @default.
- W4360993674 citedByCount "0" @default.
- W4360993674 crossrefType "journal-article" @default.
- W4360993674 hasAuthorship W4360993674A5020209060 @default.
- W4360993674 hasAuthorship W4360993674A5033747658 @default.
- W4360993674 hasAuthorship W4360993674A5035186807 @default.
- W4360993674 hasAuthorship W4360993674A5048503470 @default.
- W4360993674 hasAuthorship W4360993674A5065859286 @default.
- W4360993674 hasAuthorship W4360993674A5077678811 @default.
- W4360993674 hasBestOaLocation W43609936741 @default.
- W4360993674 hasConcept C111919701 @default.
- W4360993674 hasConcept C121332964 @default.
- W4360993674 hasConcept C13280743 @default.
- W4360993674 hasConcept C163258240 @default.
- W4360993674 hasConcept C185798385 @default.
- W4360993674 hasConcept C205649164 @default.
- W4360993674 hasConcept C40293303 @default.
- W4360993674 hasConcept C41008148 @default.
- W4360993674 hasConcept C62520636 @default.
- W4360993674 hasConcept C71901391 @default.
- W4360993674 hasConcept C79403827 @default.
- W4360993674 hasConceptScore W4360993674C111919701 @default.
- W4360993674 hasConceptScore W4360993674C121332964 @default.
- W4360993674 hasConceptScore W4360993674C13280743 @default.
- W4360993674 hasConceptScore W4360993674C163258240 @default.
- W4360993674 hasConceptScore W4360993674C185798385 @default.
- W4360993674 hasConceptScore W4360993674C205649164 @default.
- W4360993674 hasConceptScore W4360993674C40293303 @default.
- W4360993674 hasConceptScore W4360993674C41008148 @default.
- W4360993674 hasConceptScore W4360993674C62520636 @default.
- W4360993674 hasConceptScore W4360993674C71901391 @default.
- W4360993674 hasConceptScore W4360993674C79403827 @default.
- W4360993674 hasLocation W43609936741 @default.
- W4360993674 hasOpenAccess W4360993674 @default.
- W4360993674 hasPrimaryLocation W43609936741 @default.
- W4360993674 hasRelatedWork W112744582 @default.
- W4360993674 hasRelatedWork W1485630101 @default.
- W4360993674 hasRelatedWork W1983811306 @default.
- W4360993674 hasRelatedWork W2089848187 @default.
- W4360993674 hasRelatedWork W2337631725 @default.
- W4360993674 hasRelatedWork W2358742051 @default.
- W4360993674 hasRelatedWork W2365093105 @default.
- W4360993674 hasRelatedWork W2498017833 @default.
- W4360993674 hasRelatedWork W2516405122 @default.
- W4360993674 hasRelatedWork W4386322313 @default.
- W4360993674 hasVolume "11" @default.
- W4360993674 isParatext "false" @default.
- W4360993674 isRetracted "false" @default.
- W4360993674 workType "article" @default.