Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360993838> ?p ?o ?g. }
- W4360993838 abstract "Over the next decade new $ensuremath{mu}ensuremath{rightarrow}e$ conversion searches at Fermilab (Mu2e) and J-PARC (COMET, DeeMe) are expected to advance limits on charged lepton flavor violation (CLFV) by more than four orders of magnitude. By considering the consequence of $P$ and $CP$ on elastic $ensuremath{mu}ensuremath{rightarrow}e$ conversion and the structure of possible charge and current densities, we show that rates are governed by six nuclear responses and a single scale, $q/{m}_{N}$, where $qensuremath{approx}{m}_{ensuremath{mu}}$ is the momentum transferred from the leptons to the nucleus. To relate this result to microscopic formulations of CLFV, we construct in nonrelativistic effective theory (NRET) the CLFV nucleon-level interaction, pointing out the relevance of the dimensionless scales $y={(frac{qb}{2})}^{2}>|{stackrel{Pvec}{v}}_{N}|>|{stackrel{Pvec}{v}}_{ensuremath{mu}}|>|{stackrel{Pvec}{v}}_{T}|$, where $b$ is the nuclear size, ${stackrel{Pvec}{v}}_{N}$ and ${stackrel{Pvec}{v}}_{ensuremath{mu}}$ are the nucleon and muon intrinsic velocities, and ${stackrel{Pvec}{v}}_{T}$ is the target recoil velocity. We discuss previous work, noting the lack of a systematic treatment of the various small parameters. Because the parameter $y$ is not small, a proper calculation of $ensuremath{mu}ensuremath{rightarrow}e$ conversion requires a full multipole expansion of the nuclear response functions, an apparently daunting task with Coulomb-distorted electron partial waves. We demonstrate that the multipole expansion can be carried out to high precision by introducing a simplifying local momentum ${q}_{mathrm{eff}}$ for the electron. Previous work has been limited to simple charge or spin interactions, thereby treating the nucleus effectively as a point particle. We show that such formulations are not compatible with the general form of the $ensuremath{mu}ensuremath{rightarrow}e$ conversion rate, failing to generate three of the six allowed nuclear response functions. The inclusion of the nucleon velocity ${stackrel{Pvec}{v}}_{N}$ yields an NRET with 16 operators and a rate of the general form. Consequently, in the current discovery era for CLFV, it provides the most sensible starting point for experimental analysis, defining what can and cannot be determined about CLFV from the highly exclusive process of $ensuremath{mu}ensuremath{rightarrow}e$ conversion. Finally, we expand the NRET operator basis to account for the effects of ${stackrel{Pvec}{v}}_{ensuremath{mu}}$, associated with the muon's lower component, generating corrections to the CLFV coefficients of the point-nucleus response functions. Using advanced shell-model methods, we compute $ensuremath{mu}ensuremath{rightarrow}e$ conversion rates for a series of experimental targets, deriving bounds on the coefficients of the CLFV operators. These calculations are the first to include a general basis of CLFV operators, full evaluation of the associated nuclear response functions, and an accurate treatment of electron and muon Coulomb effects. We discuss target selection as an experimental ``knob'' that can be turned to probe the microscopic origins of CLFV. We describe two types of coherence that enhance certain CLFV operators and selection rules that blind elastic $ensuremath{mu}ensuremath{rightarrow}e$ conversion to others. We discuss the matching of the NRET onto higher level effective field theories, such as those constructed at the light quark level, noting opportunities to build on existing work in direct detection of dark matter. We discuss the relation of $ensuremath{mu}ensuremath{rightarrow}e$ conversion to $ensuremath{mu}ensuremath{rightarrow}e+ensuremath{gamma}$ and $ensuremath{mu}ensuremath{rightarrow}3e$, showing how MEG II and Mu3e results will complement those of Mu2e and COMET. Finally we describe a accompanying script---in Mathematica and Python versions---that can be used to compute $ensuremath{mu}ensuremath{rightarrow}e$ conversion rates in various nuclear targets for the full set of NRET operators." @default.
- W4360993838 created "2023-03-30" @default.
- W4360993838 creator A5052054675 @default.
- W4360993838 creator A5058781785 @default.
- W4360993838 creator A5062518618 @default.
- W4360993838 creator A5089394675 @default.
- W4360993838 date "2023-03-27" @default.
- W4360993838 modified "2023-10-15" @default.
- W4360993838 title "Nuclear-level effective theory of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mi>μ</mml:mi><mml:mo>→</mml:mo><mml:mi>e</mml:mi></mml:mrow></mml:math> conversion: Formalism and applications" @default.
- W4360993838 cites W1489410376 @default.
- W4360993838 cites W1494743933 @default.
- W4360993838 cites W1708285458 @default.
- W4360993838 cites W1825479281 @default.
- W4360993838 cites W1965442425 @default.
- W4360993838 cites W1966168690 @default.
- W4360993838 cites W1967250560 @default.
- W4360993838 cites W1969561958 @default.
- W4360993838 cites W1969660325 @default.
- W4360993838 cites W1969694116 @default.
- W4360993838 cites W1980822864 @default.
- W4360993838 cites W1983743981 @default.
- W4360993838 cites W1988779431 @default.
- W4360993838 cites W1994178932 @default.
- W4360993838 cites W1999631403 @default.
- W4360993838 cites W2002057118 @default.
- W4360993838 cites W2002132314 @default.
- W4360993838 cites W2003950177 @default.
- W4360993838 cites W2013098434 @default.
- W4360993838 cites W2016966684 @default.
- W4360993838 cites W2022789202 @default.
- W4360993838 cites W2026985507 @default.
- W4360993838 cites W2031648504 @default.
- W4360993838 cites W2035770865 @default.
- W4360993838 cites W2039299044 @default.
- W4360993838 cites W2054596921 @default.
- W4360993838 cites W2057643465 @default.
- W4360993838 cites W2058786406 @default.
- W4360993838 cites W2064992349 @default.
- W4360993838 cites W2067220891 @default.
- W4360993838 cites W2068084905 @default.
- W4360993838 cites W2071340307 @default.
- W4360993838 cites W2073993869 @default.
- W4360993838 cites W2076503433 @default.
- W4360993838 cites W2077147423 @default.
- W4360993838 cites W2077543364 @default.
- W4360993838 cites W2079412025 @default.
- W4360993838 cites W2085162256 @default.
- W4360993838 cites W2096986024 @default.
- W4360993838 cites W2098281955 @default.
- W4360993838 cites W2114448955 @default.
- W4360993838 cites W2115666765 @default.
- W4360993838 cites W2126001604 @default.
- W4360993838 cites W2126214337 @default.
- W4360993838 cites W2130030623 @default.
- W4360993838 cites W2133746488 @default.
- W4360993838 cites W2146713831 @default.
- W4360993838 cites W2147768675 @default.
- W4360993838 cites W2147871775 @default.
- W4360993838 cites W2162823695 @default.
- W4360993838 cites W2163465734 @default.
- W4360993838 cites W2190632185 @default.
- W4360993838 cites W2223525360 @default.
- W4360993838 cites W2232724350 @default.
- W4360993838 cites W2237990622 @default.
- W4360993838 cites W2284517562 @default.
- W4360993838 cites W2328058424 @default.
- W4360993838 cites W2329087191 @default.
- W4360993838 cites W2465362880 @default.
- W4360993838 cites W2562248108 @default.
- W4360993838 cites W2588593936 @default.
- W4360993838 cites W2595841745 @default.
- W4360993838 cites W2620377130 @default.
- W4360993838 cites W2761199960 @default.
- W4360993838 cites W2865863443 @default.
- W4360993838 cites W2904155050 @default.
- W4360993838 cites W2922331199 @default.
- W4360993838 cites W2954640643 @default.
- W4360993838 cites W2962789046 @default.
- W4360993838 cites W2980945074 @default.
- W4360993838 cites W3011333185 @default.
- W4360993838 cites W3099570805 @default.
- W4360993838 cites W3099907541 @default.
- W4360993838 cites W3100671495 @default.
- W4360993838 cites W3100893764 @default.
- W4360993838 cites W3104446359 @default.
- W4360993838 cites W3105913033 @default.
- W4360993838 cites W3124317300 @default.
- W4360993838 cites W3196861464 @default.
- W4360993838 cites W4226358635 @default.
- W4360993838 cites W4281395460 @default.
- W4360993838 cites W4360993709 @default.
- W4360993838 cites W4360993808 @default.
- W4360993838 doi "https://doi.org/10.1103/physrevc.107.035504" @default.
- W4360993838 hasPublicationYear "2023" @default.
- W4360993838 type Work @default.
- W4360993838 citedByCount "2" @default.
- W4360993838 countsByYear W43609938382023 @default.
- W4360993838 crossrefType "journal-article" @default.
- W4360993838 hasAuthorship W4360993838A5052054675 @default.
- W4360993838 hasAuthorship W4360993838A5058781785 @default.