Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360994138> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4360994138 abstract "Data storage, bandwidth, and processing speed are all growing in the IT industry. The resulting increase in cyberattacks and threats necessitates the use of cutting -edge technology to employ a creative and predictive security approach. Using the information available, a model will be built by analysing various data sets and monitoring trends. (DDoS) are one of the prevalent problems and assaults wreaking havoc on internet-connected computer equipment? This study compares the working of several ML-based classifiers for detecting DDoS attacks before they occur. This experiment analysed data from the benchmark KDD-Cup-1999 DDoS attack. I have three distinct types of selection techniques to select essential features in the context of DDoS detection. The results show that feature selection methods can help domain experts understand the intrusion system's main hidden patterns and features during DDoS detection. The main challenges they faced are that DDOS attacks are more complex and attacks are coming from many places which makes them difficult to detect. The proposed sample learns to recognize regular network traffic to detect ICMP, TCP, and UDP DDoS traffic as it arrives. Tests show that machine learning algorithms can correctly classify traffic into regular and DDoS. The finding has lasting implications for many industries, including defence, financial institutions, and healthcare, and because other businesses need sophisticated intrusion detection techniques. The future direction of the proposed method is to implement the model in different datasets." @default.
- W4360994138 created "2023-03-30" @default.
- W4360994138 creator A5001337495 @default.
- W4360994138 creator A5011941960 @default.
- W4360994138 creator A5019142136 @default.
- W4360994138 creator A5022222475 @default.
- W4360994138 creator A5054744677 @default.
- W4360994138 creator A5066316263 @default.
- W4360994138 date "2023-02-02" @default.
- W4360994138 modified "2023-09-23" @default.
- W4360994138 title "Comparative Study of IDS against DDOS Attack using Machine Learning Algorithms" @default.
- W4360994138 doi "https://doi.org/10.1109/icais56108.2023.10073681" @default.
- W4360994138 hasPublicationYear "2023" @default.
- W4360994138 type Work @default.
- W4360994138 citedByCount "0" @default.
- W4360994138 crossrefType "proceedings-article" @default.
- W4360994138 hasAuthorship W4360994138A5001337495 @default.
- W4360994138 hasAuthorship W4360994138A5011941960 @default.
- W4360994138 hasAuthorship W4360994138A5019142136 @default.
- W4360994138 hasAuthorship W4360994138A5022222475 @default.
- W4360994138 hasAuthorship W4360994138A5054744677 @default.
- W4360994138 hasAuthorship W4360994138A5066316263 @default.
- W4360994138 hasConcept C110875604 @default.
- W4360994138 hasConcept C119857082 @default.
- W4360994138 hasConcept C124101348 @default.
- W4360994138 hasConcept C13280743 @default.
- W4360994138 hasConcept C136764020 @default.
- W4360994138 hasConcept C148483581 @default.
- W4360994138 hasConcept C151730666 @default.
- W4360994138 hasConcept C154945302 @default.
- W4360994138 hasConcept C158379750 @default.
- W4360994138 hasConcept C185798385 @default.
- W4360994138 hasConcept C195219913 @default.
- W4360994138 hasConcept C205649164 @default.
- W4360994138 hasConcept C2779343474 @default.
- W4360994138 hasConcept C35525427 @default.
- W4360994138 hasConcept C38652104 @default.
- W4360994138 hasConcept C38822068 @default.
- W4360994138 hasConcept C41008148 @default.
- W4360994138 hasConcept C739882 @default.
- W4360994138 hasConcept C86803240 @default.
- W4360994138 hasConceptScore W4360994138C110875604 @default.
- W4360994138 hasConceptScore W4360994138C119857082 @default.
- W4360994138 hasConceptScore W4360994138C124101348 @default.
- W4360994138 hasConceptScore W4360994138C13280743 @default.
- W4360994138 hasConceptScore W4360994138C136764020 @default.
- W4360994138 hasConceptScore W4360994138C148483581 @default.
- W4360994138 hasConceptScore W4360994138C151730666 @default.
- W4360994138 hasConceptScore W4360994138C154945302 @default.
- W4360994138 hasConceptScore W4360994138C158379750 @default.
- W4360994138 hasConceptScore W4360994138C185798385 @default.
- W4360994138 hasConceptScore W4360994138C195219913 @default.
- W4360994138 hasConceptScore W4360994138C205649164 @default.
- W4360994138 hasConceptScore W4360994138C2779343474 @default.
- W4360994138 hasConceptScore W4360994138C35525427 @default.
- W4360994138 hasConceptScore W4360994138C38652104 @default.
- W4360994138 hasConceptScore W4360994138C38822068 @default.
- W4360994138 hasConceptScore W4360994138C41008148 @default.
- W4360994138 hasConceptScore W4360994138C739882 @default.
- W4360994138 hasConceptScore W4360994138C86803240 @default.
- W4360994138 hasLocation W43609941381 @default.
- W4360994138 hasOpenAccess W4360994138 @default.
- W4360994138 hasPrimaryLocation W43609941381 @default.
- W4360994138 hasRelatedWork W1521770704 @default.
- W4360994138 hasRelatedWork W2145588106 @default.
- W4360994138 hasRelatedWork W2375587188 @default.
- W4360994138 hasRelatedWork W2785391232 @default.
- W4360994138 hasRelatedWork W3005624724 @default.
- W4360994138 hasRelatedWork W3167520454 @default.
- W4360994138 hasRelatedWork W3185692078 @default.
- W4360994138 hasRelatedWork W4239371143 @default.
- W4360994138 hasRelatedWork W53300123 @default.
- W4360994138 hasRelatedWork W1806628227 @default.
- W4360994138 isParatext "false" @default.
- W4360994138 isRetracted "false" @default.
- W4360994138 workType "article" @default.