Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360996836> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4360996836 abstract "It is common for modern multi-tier applications to use highly performant databases to manage and store business data. These systems are attractive to hackers because they contain essential data, and great care must be taken to prevent unauthorized access to the database layer. SQL Injection attacks (SQLIA) are one of the most common web applications (WA) threats. SQL injection, more often known as SQL Injection (SQLI), is a different attack method that involves injecting malicious SQL code into a database. Thanks to deep learning algorithms, the classification can be performed without manual feature extraction. It has been proposed a Specially Designed two-dimensional convolutional neural network (2D-CNN) architecture built using python. Further, the proposed 2D-CNN can be extracted automatic features from numerical data. Here, binary classify (normal and malicious queries) was applied. While this dataset is one-dimensional text, these are transformed into the two-dimensional matrix with word embedding (Skip-Gram Model) technique taking both context and syntax information from SQL into consideration for extracting low-dimensional vector representations of words and feature engineering using a neural network. Technically, this process would increase the classification accuracy detection of SQLIA with high harmony. The dataset from Kaggle.com, which includes all major types of SQL attacks, was used to test the proposed Model. The proposed model 2D-CNN accuracy is 0.9966%, while the loss is 0.0178%, based on a dataset. Deep learning algorithms and state-of-the-art classification models are compared for performance. In terms of accuracy and loss, the proposed model outperforms comparable models, according to the findings of our testing." @default.
- W4360996836 created "2023-03-30" @default.
- W4360996836 creator A5018725727 @default.
- W4360996836 creator A5044704097 @default.
- W4360996836 date "2022-11-01" @default.
- W4360996836 modified "2023-09-27" @default.
- W4360996836 title "SQL Injection Detection Using 2D-Convolutional Neural Networks (2D-CNN)" @default.
- W4360996836 doi "https://doi.org/10.1109/icdsic56987.2022.10075777" @default.
- W4360996836 hasPublicationYear "2022" @default.
- W4360996836 type Work @default.
- W4360996836 citedByCount "0" @default.
- W4360996836 crossrefType "proceedings-article" @default.
- W4360996836 hasAuthorship W4360996836A5018725727 @default.
- W4360996836 hasAuthorship W4360996836A5044704097 @default.
- W4360996836 hasConcept C108583219 @default.
- W4360996836 hasConcept C119857082 @default.
- W4360996836 hasConcept C124101348 @default.
- W4360996836 hasConcept C150451098 @default.
- W4360996836 hasConcept C154420247 @default.
- W4360996836 hasConcept C154945302 @default.
- W4360996836 hasConcept C164120249 @default.
- W4360996836 hasConcept C194222762 @default.
- W4360996836 hasConcept C199360897 @default.
- W4360996836 hasConcept C23123220 @default.
- W4360996836 hasConcept C41008148 @default.
- W4360996836 hasConcept C510870499 @default.
- W4360996836 hasConcept C519991488 @default.
- W4360996836 hasConcept C52622490 @default.
- W4360996836 hasConcept C67186912 @default.
- W4360996836 hasConcept C77088390 @default.
- W4360996836 hasConcept C81363708 @default.
- W4360996836 hasConcept C97854310 @default.
- W4360996836 hasConceptScore W4360996836C108583219 @default.
- W4360996836 hasConceptScore W4360996836C119857082 @default.
- W4360996836 hasConceptScore W4360996836C124101348 @default.
- W4360996836 hasConceptScore W4360996836C150451098 @default.
- W4360996836 hasConceptScore W4360996836C154420247 @default.
- W4360996836 hasConceptScore W4360996836C154945302 @default.
- W4360996836 hasConceptScore W4360996836C164120249 @default.
- W4360996836 hasConceptScore W4360996836C194222762 @default.
- W4360996836 hasConceptScore W4360996836C199360897 @default.
- W4360996836 hasConceptScore W4360996836C23123220 @default.
- W4360996836 hasConceptScore W4360996836C41008148 @default.
- W4360996836 hasConceptScore W4360996836C510870499 @default.
- W4360996836 hasConceptScore W4360996836C519991488 @default.
- W4360996836 hasConceptScore W4360996836C52622490 @default.
- W4360996836 hasConceptScore W4360996836C67186912 @default.
- W4360996836 hasConceptScore W4360996836C77088390 @default.
- W4360996836 hasConceptScore W4360996836C81363708 @default.
- W4360996836 hasConceptScore W4360996836C97854310 @default.
- W4360996836 hasLocation W43609968361 @default.
- W4360996836 hasOpenAccess W4360996836 @default.
- W4360996836 hasPrimaryLocation W43609968361 @default.
- W4360996836 hasRelatedWork W142115101 @default.
- W4360996836 hasRelatedWork W2183825452 @default.
- W4360996836 hasRelatedWork W2282389522 @default.
- W4360996836 hasRelatedWork W2291333157 @default.
- W4360996836 hasRelatedWork W2356451189 @default.
- W4360996836 hasRelatedWork W2360168773 @default.
- W4360996836 hasRelatedWork W2368606217 @default.
- W4360996836 hasRelatedWork W2463360381 @default.
- W4360996836 hasRelatedWork W2752911054 @default.
- W4360996836 hasRelatedWork W2756130066 @default.
- W4360996836 isParatext "false" @default.
- W4360996836 isRetracted "false" @default.
- W4360996836 workType "article" @default.