Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360996860> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4360996860 abstract "In the power industry system, line loss and line loss rate (L L R) are very important comprehensive indicators. The value of line loss directly affects the economic benefits of power companies, and is related to the vital interests of companies. It is not only important for the country to assess the power sector Economic indicators, colleagues can also reflect whether the grid structure and operation mode of a power grid are reasonable, and reflect the level of grid planning, power generation technology, and operation management. Based on this, the purpose of this article is to calculate and analyze the theoretical L L R based on the deep learning mechanism. This article first summarizes the theoretical basis of deep learning, and then studies the existing theoretical L L R calculation methods. On its basis, it is researched and analyzed in combination with the deep learning mechanism. This paper systematically explains the analysis process of the theoretical L L R based on the electrical network, the calculation method of the theoretical L L R based on DBN-DNN (D B N), and the theoretical L L R analysis based on the deep confidence network. And use comparative analysis method, observation method and other research methods to study the theme of this article. Experimental studies have shown that when the grid structure is unchanged, the DBN-DNN combined deep learning model proposed in this paper has a faster calculation speed, and the calculation result has a smaller deviation compared with the real result. The maximum error is 0.0077 and the minimum is 0.0011. Therefore, the deep learning model based on the DBN- DNN combination can accurately and quickly calculate the theoretical line loss rate when the grid structure is unchanged." @default.
- W4360996860 created "2023-03-30" @default.
- W4360996860 creator A5059186404 @default.
- W4360996860 date "2022-10-01" @default.
- W4360996860 modified "2023-10-12" @default.
- W4360996860 title "Calculation and Analysis of Theoretical Line Loss Rate Based on Deep Learning Mechanism" @default.
- W4360996860 doi "https://doi.org/10.1109/aiam57466.2022.00128" @default.
- W4360996860 hasPublicationYear "2022" @default.
- W4360996860 type Work @default.
- W4360996860 citedByCount "0" @default.
- W4360996860 crossrefType "proceedings-article" @default.
- W4360996860 hasAuthorship W4360996860A5059186404 @default.
- W4360996860 hasConcept C108583219 @default.
- W4360996860 hasConcept C111472728 @default.
- W4360996860 hasConcept C111919701 @default.
- W4360996860 hasConcept C119857082 @default.
- W4360996860 hasConcept C121332964 @default.
- W4360996860 hasConcept C12426560 @default.
- W4360996860 hasConcept C127413603 @default.
- W4360996860 hasConcept C13736549 @default.
- W4360996860 hasConcept C138885662 @default.
- W4360996860 hasConcept C154945302 @default.
- W4360996860 hasConcept C163258240 @default.
- W4360996860 hasConcept C187691185 @default.
- W4360996860 hasConcept C198352243 @default.
- W4360996860 hasConcept C2524010 @default.
- W4360996860 hasConcept C2776291640 @default.
- W4360996860 hasConcept C2983254600 @default.
- W4360996860 hasConcept C33566652 @default.
- W4360996860 hasConcept C33923547 @default.
- W4360996860 hasConcept C41008148 @default.
- W4360996860 hasConcept C42475967 @default.
- W4360996860 hasConcept C48677424 @default.
- W4360996860 hasConcept C62520636 @default.
- W4360996860 hasConcept C89611455 @default.
- W4360996860 hasConcept C98045186 @default.
- W4360996860 hasConceptScore W4360996860C108583219 @default.
- W4360996860 hasConceptScore W4360996860C111472728 @default.
- W4360996860 hasConceptScore W4360996860C111919701 @default.
- W4360996860 hasConceptScore W4360996860C119857082 @default.
- W4360996860 hasConceptScore W4360996860C121332964 @default.
- W4360996860 hasConceptScore W4360996860C12426560 @default.
- W4360996860 hasConceptScore W4360996860C127413603 @default.
- W4360996860 hasConceptScore W4360996860C13736549 @default.
- W4360996860 hasConceptScore W4360996860C138885662 @default.
- W4360996860 hasConceptScore W4360996860C154945302 @default.
- W4360996860 hasConceptScore W4360996860C163258240 @default.
- W4360996860 hasConceptScore W4360996860C187691185 @default.
- W4360996860 hasConceptScore W4360996860C198352243 @default.
- W4360996860 hasConceptScore W4360996860C2524010 @default.
- W4360996860 hasConceptScore W4360996860C2776291640 @default.
- W4360996860 hasConceptScore W4360996860C2983254600 @default.
- W4360996860 hasConceptScore W4360996860C33566652 @default.
- W4360996860 hasConceptScore W4360996860C33923547 @default.
- W4360996860 hasConceptScore W4360996860C41008148 @default.
- W4360996860 hasConceptScore W4360996860C42475967 @default.
- W4360996860 hasConceptScore W4360996860C48677424 @default.
- W4360996860 hasConceptScore W4360996860C62520636 @default.
- W4360996860 hasConceptScore W4360996860C89611455 @default.
- W4360996860 hasConceptScore W4360996860C98045186 @default.
- W4360996860 hasLocation W43609968601 @default.
- W4360996860 hasOpenAccess W4360996860 @default.
- W4360996860 hasPrimaryLocation W43609968601 @default.
- W4360996860 hasRelatedWork W2034331833 @default.
- W4360996860 hasRelatedWork W2074458376 @default.
- W4360996860 hasRelatedWork W2320512049 @default.
- W4360996860 hasRelatedWork W2358407552 @default.
- W4360996860 hasRelatedWork W2359526970 @default.
- W4360996860 hasRelatedWork W2365403735 @default.
- W4360996860 hasRelatedWork W2370999470 @default.
- W4360996860 hasRelatedWork W2380158792 @default.
- W4360996860 hasRelatedWork W2387717794 @default.
- W4360996860 hasRelatedWork W3211249976 @default.
- W4360996860 isParatext "false" @default.
- W4360996860 isRetracted "false" @default.
- W4360996860 workType "article" @default.