Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360996964> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4360996964 abstract "Foreign Object Debris (FOD) is considered one of the significant problems in the airline maintenance industry, reducing the levels of safety. A foreign object may result in causing severe damage to airplanes, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplane flying. This paper proposes an FOD model using a variety of feature extraction approaches, including Convolution Neural Network (CNN) with VGG16, Linear Discriminant Analysis (LDA), and Gray-level Co-occurrence Matrix (GLCM) to extract FOD images' features. Moreover, two machine learning algorithms are used, namely Logistic Regression (LR) and Stochastic Gradient Descent (SGD), for classification purposes. The data for this research was taken from the Shanghai International Airport runways. The performance measures utilized in this paper are precision, accuracy, F-score, and recall. The experimental results obtained after implementation and testing the accuracy of 100%, the precision of 100%, recall of 100%, and F1-score of 100% for LR and SGD. The experiments demonstrate that the suggested technique has excellent detection accuracy. In addition, the suggested method should enable aircraft manufacturers to forecast the sort of FOD that will occur under specific conditions. In the proposed system, deep learning and machine learning methods will be utilized to deliver an accurate recognition result with as few FOD images as possible with a low error rate." @default.
- W4360996964 created "2023-03-30" @default.
- W4360996964 creator A5059618009 @default.
- W4360996964 creator A5066733749 @default.
- W4360996964 date "2022-11-01" @default.
- W4360996964 modified "2023-10-14" @default.
- W4360996964 title "Enhancement of Foreign Object Debris Material Recognition using Deep Learning and Machine Learning" @default.
- W4360996964 doi "https://doi.org/10.1109/icdsic56987.2022.10075879" @default.
- W4360996964 hasPublicationYear "2022" @default.
- W4360996964 type Work @default.
- W4360996964 citedByCount "0" @default.
- W4360996964 crossrefType "proceedings-article" @default.
- W4360996964 hasAuthorship W4360996964A5059618009 @default.
- W4360996964 hasAuthorship W4360996964A5066733749 @default.
- W4360996964 hasConcept C108583219 @default.
- W4360996964 hasConcept C119857082 @default.
- W4360996964 hasConcept C153180895 @default.
- W4360996964 hasConcept C154945302 @default.
- W4360996964 hasConcept C206688291 @default.
- W4360996964 hasConcept C23123220 @default.
- W4360996964 hasConcept C2776151529 @default.
- W4360996964 hasConcept C41008148 @default.
- W4360996964 hasConcept C50644808 @default.
- W4360996964 hasConcept C52622490 @default.
- W4360996964 hasConcept C69738355 @default.
- W4360996964 hasConcept C88548561 @default.
- W4360996964 hasConceptScore W4360996964C108583219 @default.
- W4360996964 hasConceptScore W4360996964C119857082 @default.
- W4360996964 hasConceptScore W4360996964C153180895 @default.
- W4360996964 hasConceptScore W4360996964C154945302 @default.
- W4360996964 hasConceptScore W4360996964C206688291 @default.
- W4360996964 hasConceptScore W4360996964C23123220 @default.
- W4360996964 hasConceptScore W4360996964C2776151529 @default.
- W4360996964 hasConceptScore W4360996964C41008148 @default.
- W4360996964 hasConceptScore W4360996964C50644808 @default.
- W4360996964 hasConceptScore W4360996964C52622490 @default.
- W4360996964 hasConceptScore W4360996964C69738355 @default.
- W4360996964 hasConceptScore W4360996964C88548561 @default.
- W4360996964 hasLocation W43609969641 @default.
- W4360996964 hasOpenAccess W4360996964 @default.
- W4360996964 hasPrimaryLocation W43609969641 @default.
- W4360996964 hasRelatedWork W2792987183 @default.
- W4360996964 hasRelatedWork W2970686063 @default.
- W4360996964 hasRelatedWork W3122799380 @default.
- W4360996964 hasRelatedWork W3186111093 @default.
- W4360996964 hasRelatedWork W4210841218 @default.
- W4360996964 hasRelatedWork W4223943233 @default.
- W4360996964 hasRelatedWork W4285183766 @default.
- W4360996964 hasRelatedWork W4312200629 @default.
- W4360996964 hasRelatedWork W4312445905 @default.
- W4360996964 hasRelatedWork W4360585206 @default.
- W4360996964 isParatext "false" @default.
- W4360996964 isRetracted "false" @default.
- W4360996964 workType "article" @default.