Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361004024> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4361004024 abstract "Friction stir welding is a novel solid-state joining process which has been a major area of research due to its applications in joining lightweight alloys. Although this welding process has the inherent advantage of joining alloys at significantly lower temperatures when compared to conventional fusion welding processes, thereby reducing energy consumption and thermal residual stresses, the overall final strength and feasibility of the joint has been found to be highly sensitive to the choice of welding process parameters. Defects such as void formations in friction stir welds are extremely detrimental to the strength of the weld joint as it could lead to catastrophic failures, expensive breakdowns in components, rejection of parts and even loss of lives (Yusof and Jamaluddin, 2014) [1]. These voids in the weld act as discontinuities for the joint as a result of which, the joint strength is severely weakened. Hence, it is of utmost importance to avoid the welding conditions that contribute to the formations of the void defects in structurally critical metallic joints. This study proposes an improved classification model based on a hyperparameter tuned XGBoost classifier algorithm to predict the probability of void formations with raw welding process parameters as inputs. The data set consisted of 108 entries of experimental data collected from past literatures on void formation for the friction stir welding of three aluminium alloys, AA2024, AA2219, and AA6061. While each alloy has unique chemical composition and mechanical properties, the study later identifies that the choice of alloy is amongst the weaker contributors to the presence of void defects. The proposed tuned model could successfully classify the joints containing voids with an accuracy of 90% while both the decision-tree based model and the neural-network based model could classify with an accuracy of 83.3%." @default.
- W4361004024 created "2023-03-30" @default.
- W4361004024 creator A5021624865 @default.
- W4361004024 creator A5032572252 @default.
- W4361004024 date "2023-03-01" @default.
- W4361004024 modified "2023-10-17" @default.
- W4361004024 title "Optimised machine learning classification model to detect void formations in friction stir welding" @default.
- W4361004024 cites W1977056845 @default.
- W4361004024 cites W1978369819 @default.
- W4361004024 cites W1988758821 @default.
- W4361004024 cites W1990989708 @default.
- W4361004024 cites W1998611533 @default.
- W4361004024 cites W2004386532 @default.
- W4361004024 cites W20086747 @default.
- W4361004024 cites W2036486169 @default.
- W4361004024 cites W2039322984 @default.
- W4361004024 cites W2044500357 @default.
- W4361004024 cites W2046419837 @default.
- W4361004024 cites W2056392899 @default.
- W4361004024 cites W2074758036 @default.
- W4361004024 cites W2088095493 @default.
- W4361004024 cites W2263545009 @default.
- W4361004024 cites W2466255798 @default.
- W4361004024 cites W2621027982 @default.
- W4361004024 cites W2727338340 @default.
- W4361004024 cites W2769504372 @default.
- W4361004024 cites W2791058004 @default.
- W4361004024 cites W2805649080 @default.
- W4361004024 cites W2953853236 @default.
- W4361004024 cites W2959026770 @default.
- W4361004024 cites W2999495740 @default.
- W4361004024 cites W3102476541 @default.
- W4361004024 cites W3111404230 @default.
- W4361004024 cites W3208098642 @default.
- W4361004024 cites W4200267465 @default.
- W4361004024 cites W4206581260 @default.
- W4361004024 cites W4206709511 @default.
- W4361004024 cites W4253782223 @default.
- W4361004024 doi "https://doi.org/10.1016/j.matpr.2023.03.386" @default.
- W4361004024 hasPublicationYear "2023" @default.
- W4361004024 type Work @default.
- W4361004024 citedByCount "0" @default.
- W4361004024 crossrefType "journal-article" @default.
- W4361004024 hasAuthorship W4361004024A5021624865 @default.
- W4361004024 hasAuthorship W4361004024A5032572252 @default.
- W4361004024 hasConcept C127413603 @default.
- W4361004024 hasConcept C159985019 @default.
- W4361004024 hasConcept C169312260 @default.
- W4361004024 hasConcept C18555067 @default.
- W4361004024 hasConcept C191897082 @default.
- W4361004024 hasConcept C192562407 @default.
- W4361004024 hasConcept C19474535 @default.
- W4361004024 hasConcept C2779772531 @default.
- W4361004024 hasConcept C40367268 @default.
- W4361004024 hasConcept C44273521 @default.
- W4361004024 hasConcept C62352918 @default.
- W4361004024 hasConcept C66938386 @default.
- W4361004024 hasConcept C78519656 @default.
- W4361004024 hasConceptScore W4361004024C127413603 @default.
- W4361004024 hasConceptScore W4361004024C159985019 @default.
- W4361004024 hasConceptScore W4361004024C169312260 @default.
- W4361004024 hasConceptScore W4361004024C18555067 @default.
- W4361004024 hasConceptScore W4361004024C191897082 @default.
- W4361004024 hasConceptScore W4361004024C192562407 @default.
- W4361004024 hasConceptScore W4361004024C19474535 @default.
- W4361004024 hasConceptScore W4361004024C2779772531 @default.
- W4361004024 hasConceptScore W4361004024C40367268 @default.
- W4361004024 hasConceptScore W4361004024C44273521 @default.
- W4361004024 hasConceptScore W4361004024C62352918 @default.
- W4361004024 hasConceptScore W4361004024C66938386 @default.
- W4361004024 hasConceptScore W4361004024C78519656 @default.
- W4361004024 hasLocation W43610040241 @default.
- W4361004024 hasOpenAccess W4361004024 @default.
- W4361004024 hasPrimaryLocation W43610040241 @default.
- W4361004024 hasRelatedWork W2059497757 @default.
- W4361004024 hasRelatedWork W2185086903 @default.
- W4361004024 hasRelatedWork W2351058078 @default.
- W4361004024 hasRelatedWork W2352828544 @default.
- W4361004024 hasRelatedWork W2595226582 @default.
- W4361004024 hasRelatedWork W3036156490 @default.
- W4361004024 hasRelatedWork W3136811499 @default.
- W4361004024 hasRelatedWork W3208602303 @default.
- W4361004024 hasRelatedWork W4281758034 @default.
- W4361004024 hasRelatedWork W4323833002 @default.
- W4361004024 isParatext "false" @default.
- W4361004024 isRetracted "false" @default.
- W4361004024 workType "article" @default.