Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361004072> ?p ?o ?g. }
- W4361004072 abstract "To evaluate the utility of polygenic risk scores (PRSs) in identifying high-risk individuals, different publicly available PRSs for breast (n=85), prostate (n=37), colorectal (n=22), and lung cancers (n=11) were examined in a prospective study of 21,694 Chinese adults.We constructed PRS using weights curated in the online PGS Catalog. PRS performance was evaluated by distribution, discrimination, predictive ability, and calibration. Hazard ratios (HR) and corresponding confidence intervals (CI) of the common cancers after 20 years of follow-up were estimated using Cox proportional hazard models for different levels of PRS.A total of 495 breast, 308 prostate, 332 female-colorectal, 409 male-colorectal, 181 female-lung, and 381 male-lung incident cancers were identified. The area under receiver operating characteristic curve for the best-performing site-specific PRS were 0.61 (PGS000873, breast), 0.70 (PGS00662, prostate), 0.65 (PGS000055, female-colorectal), 0.60 (PGS000734, male-colorectal), 0.56 (PGS000721, female-lung), and 0.58 (PGS000070, male-lung), respectively. Compared to the middle quintile, individuals in the highest cancer-specific PRS quintile were 64% more likely to develop cancers of the breast, prostate, and colorectal. For lung cancer, the lowest cancer-specific PRS quintile was associated with 28-34% decreased risk compared to the middle quintile. In contrast, the HR observed for quintiles 4 (female-lung: 0.95 [0.61-1.47]; male-lung: 1.14 [0.82-1.57]) and 5 (female-lung: 0.95 [0.61-1.47]) were not significantly different from that for the middle quintile.Site-specific PRSs can stratify the risk of developing breast, prostate, and colorectal cancers in this East Asian population. Appropriate correction factors may be required to improve calibration.This work is supported by the National Research Foundation Singapore (NRF-NRFF2017-02), PRECISION Health Research, Singapore (PRECISE) and the Agency for Science, Technology and Research (A*STAR). WP Koh was supported by National Medical Research Council, Singapore (NMRC/CSA/0055/2013). CC Khor was supported by National Research Foundation Singapore (NRF-NRFI2018-01). Rajkumar Dorajoo received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090), and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022).The Singapore Chinese Health Study was supported by grants from the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016) and the U.S. National Institutes of Health (NIH) (R01 CA144034 and UM1 CA182876).Although humans contain the same genes, the sequence within these DNA sites can vary from person to person. These small variations, also known as genetic variants, can increase the risk of developing certain diseases. While each variant will only have a weak effect, if multiple variations are present the odds of developing the disease becomes significantly higher. To determine which variants are linked to a disease, researchers carry out genome-wide association studies which involve analyzing the genomes of individuals with and without the condition and comparing their genetic codes. This data is then used to calculate how different combinations of variants impact a person’s chance of getting the disease, also known as a polygenic risk score. Currently, most genome-wide association studies only incorporate genetic data from people with European ancestry. Consequently, polygenic risk scores performed using this information may not accurately predict the risk of developing the disease for individuals with other ethnicities, such as people with Asian ancestry. Here, Ho et al. evaluated how well previously calculated polygenic risk scores for the four most common cancers (breast, colorectal, prostate and lung) worked on individuals of East Asian descent. The scores were tested on a dataset containing the genetic sequence, medical history, diet and activity levels of over 21,000 people living in Singapore in the 1990s. Ho et al. found that the polygenic risk scores for breast, prostate and colorectal cancer were able to predict disease risk. However, the score for lung cancer did not perform as well. The polygenic risk score for breast cancer was the most accurate, and was able to stratify individuals into distinct risk bands at an earlier age than other scores. These findings shed light on which existing polygenic risk scores will be effective at assessing cancer risk in individuals with East Asian ancestry. Indeed, Ho et al. have already incorporated the polygenic risk score for breast cancer into a pilot study screening individuals in a comparable population in Singapore. However, the polygenic risk scores tested still performed better on individuals with European ancestry, highlighting the need to address the lack of Asian representation in genome-wide association studies." @default.
- W4361004072 created "2023-03-30" @default.
- W4361004072 creator A5001623814 @default.
- W4361004072 creator A5015138037 @default.
- W4361004072 creator A5018786162 @default.
- W4361004072 creator A5019713852 @default.
- W4361004072 creator A5036352547 @default.
- W4361004072 creator A5054773456 @default.
- W4361004072 creator A5081606775 @default.
- W4361004072 creator A5084633297 @default.
- W4361004072 date "2023-03-27" @default.
- W4361004072 modified "2023-10-02" @default.
- W4361004072 title "Polygenic risk scores for the prediction of common cancers in East Asians: A population-based prospective cohort study" @default.
- W4361004072 cites W1554405751 @default.
- W4361004072 cites W1877665117 @default.
- W4361004072 cites W1973004518 @default.
- W4361004072 cites W1985298987 @default.
- W4361004072 cites W1992501083 @default.
- W4361004072 cites W2010380543 @default.
- W4361004072 cites W2054193584 @default.
- W4361004072 cites W2056893663 @default.
- W4361004072 cites W2074389004 @default.
- W4361004072 cites W2077486917 @default.
- W4361004072 cites W2088646497 @default.
- W4361004072 cites W2089415609 @default.
- W4361004072 cites W2089651694 @default.
- W4361004072 cites W2099085143 @default.
- W4361004072 cites W2143859186 @default.
- W4361004072 cites W2149791927 @default.
- W4361004072 cites W2164856565 @default.
- W4361004072 cites W2328838746 @default.
- W4361004072 cites W2426940045 @default.
- W4361004072 cites W2467562517 @default.
- W4361004072 cites W2531587846 @default.
- W4361004072 cites W2604847258 @default.
- W4361004072 cites W2795715708 @default.
- W4361004072 cites W2808886822 @default.
- W4361004072 cites W2822564837 @default.
- W4361004072 cites W2890195818 @default.
- W4361004072 cites W2901952863 @default.
- W4361004072 cites W2932671560 @default.
- W4361004072 cites W2947916917 @default.
- W4361004072 cites W2956442594 @default.
- W4361004072 cites W2980086570 @default.
- W4361004072 cites W2989173305 @default.
- W4361004072 cites W2994676763 @default.
- W4361004072 cites W2996480032 @default.
- W4361004072 cites W3004083863 @default.
- W4361004072 cites W3012141744 @default.
- W4361004072 cites W3025060722 @default.
- W4361004072 cites W3028329270 @default.
- W4361004072 cites W3043918442 @default.
- W4361004072 cites W3046594723 @default.
- W4361004072 cites W3088258981 @default.
- W4361004072 cites W3106839128 @default.
- W4361004072 cites W3115151307 @default.
- W4361004072 cites W3115773710 @default.
- W4361004072 cites W3121333903 @default.
- W4361004072 cites W3122107622 @default.
- W4361004072 cites W3134184401 @default.
- W4361004072 cites W3134721632 @default.
- W4361004072 cites W3136460011 @default.
- W4361004072 cites W3159894416 @default.
- W4361004072 cites W3179602708 @default.
- W4361004072 cites W3186661058 @default.
- W4361004072 cites W3198774792 @default.
- W4361004072 cites W3199099636 @default.
- W4361004072 cites W3200340507 @default.
- W4361004072 cites W3209696424 @default.
- W4361004072 cites W3217131706 @default.
- W4361004072 cites W4206450812 @default.
- W4361004072 cites W4224941078 @default.
- W4361004072 cites W4226044266 @default.
- W4361004072 doi "https://doi.org/10.7554/elife.82608" @default.
- W4361004072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36971353" @default.
- W4361004072 hasPublicationYear "2023" @default.
- W4361004072 type Work @default.
- W4361004072 citedByCount "2" @default.
- W4361004072 countsByYear W43610040722023 @default.
- W4361004072 crossrefType "journal-article" @default.
- W4361004072 hasAuthorship W4361004072A5001623814 @default.
- W4361004072 hasAuthorship W4361004072A5015138037 @default.
- W4361004072 hasAuthorship W4361004072A5018786162 @default.
- W4361004072 hasAuthorship W4361004072A5019713852 @default.
- W4361004072 hasAuthorship W4361004072A5036352547 @default.
- W4361004072 hasAuthorship W4361004072A5054773456 @default.
- W4361004072 hasAuthorship W4361004072A5081606775 @default.
- W4361004072 hasAuthorship W4361004072A5084633297 @default.
- W4361004072 hasBestOaLocation W43610040721 @default.
- W4361004072 hasConcept C121608353 @default.
- W4361004072 hasConcept C126322002 @default.
- W4361004072 hasConcept C143998085 @default.
- W4361004072 hasConcept C188816634 @default.
- W4361004072 hasConcept C207103383 @default.
- W4361004072 hasConcept C2776235491 @default.
- W4361004072 hasConcept C2776256026 @default.
- W4361004072 hasConcept C2777714996 @default.
- W4361004072 hasConcept C2780192828 @default.
- W4361004072 hasConcept C2908647359 @default.
- W4361004072 hasConcept C44249647 @default.