Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361006472> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4361006472 endingPage "67" @default.
- W4361006472 startingPage "57" @default.
- W4361006472 abstract "Abstract This research paper presents a novel approach for recommending products to customers based on their cared aspects by performing sentiment analysis on customer feedback. The proposed approach utilizes the WordNet database to identify and extract aspects from customer reviews and feedback, and then applies sentiment analysis techniques to determine the sentiment associated with each aspect. The resulting sentiment scores are then used to generate personalized product recommendations that align with the customer’s preferences and priorities. Here we extract the comments from an e-commerce website that is Amazon, and we then choose the most cared aspects from those comments. The dataset is publicly available online which contains reviews of each product. The chosen most cared aspects are price, colour, battery, and screen. These cared aspects are keywords that shopping online and recommending, will help to categorize the comments based on price, colour, battery, and screen. After categorizing the comments, it will be defined as the set of explicit comments. After an explicit comment set is defined, sentiment analysis is performed to systematically identify the interest of the customer through comments. Here the comments are classified into the polarity of given texts in an explicit comment set into positive, negative, and neutral. Finally, scores were calculated for all brands which will help to recommend the product." @default.
- W4361006472 created "2023-03-30" @default.
- W4361006472 creator A5077292444 @default.
- W4361006472 date "2023-03-27" @default.
- W4361006472 modified "2023-10-09" @default.
- W4361006472 title "“Harnessing Customer Feedback for Product Recommendations: An Aspect-Level Sentiment Analysis Framework”" @default.
- W4361006472 cites W145689243 @default.
- W4361006472 cites W1481057431 @default.
- W4361006472 cites W1493526108 @default.
- W4361006472 cites W1661894467 @default.
- W4361006472 cites W1716520751 @default.
- W4361006472 cites W1966553486 @default.
- W4361006472 cites W1969105873 @default.
- W4361006472 cites W1971654081 @default.
- W4361006472 cites W1997136459 @default.
- W4361006472 cites W1999047234 @default.
- W4361006472 cites W2019759670 @default.
- W4361006472 cites W2022204871 @default.
- W4361006472 cites W2044937105 @default.
- W4361006472 cites W2066263837 @default.
- W4361006472 cites W2066636486 @default.
- W4361006472 cites W2097726431 @default.
- W4361006472 cites W2102152810 @default.
- W4361006472 cites W2110530236 @default.
- W4361006472 cites W2113927731 @default.
- W4361006472 cites W2114524997 @default.
- W4361006472 cites W2117354486 @default.
- W4361006472 cites W2120400822 @default.
- W4361006472 cites W2147654806 @default.
- W4361006472 cites W2155328222 @default.
- W4361006472 cites W2159094788 @default.
- W4361006472 cites W2161351857 @default.
- W4361006472 cites W2166706824 @default.
- W4361006472 cites W2167127906 @default.
- W4361006472 cites W2626641122 @default.
- W4361006472 cites W281665770 @default.
- W4361006472 cites W2982638854 @default.
- W4361006472 cites W3123035962 @default.
- W4361006472 cites W4292595260 @default.
- W4361006472 cites W4297922463 @default.
- W4361006472 cites W4308415655 @default.
- W4361006472 cites W4308529129 @default.
- W4361006472 doi "https://doi.org/10.1007/s44230-023-00018-2" @default.
- W4361006472 hasPublicationYear "2023" @default.
- W4361006472 type Work @default.
- W4361006472 citedByCount "0" @default.
- W4361006472 crossrefType "journal-article" @default.
- W4361006472 hasAuthorship W4361006472A5077292444 @default.
- W4361006472 hasBestOaLocation W43610064721 @default.
- W4361006472 hasConcept C154945302 @default.
- W4361006472 hasConcept C157659113 @default.
- W4361006472 hasConcept C177264268 @default.
- W4361006472 hasConcept C199360897 @default.
- W4361006472 hasConcept C23123220 @default.
- W4361006472 hasConcept C2522767166 @default.
- W4361006472 hasConcept C2524010 @default.
- W4361006472 hasConcept C33923547 @default.
- W4361006472 hasConcept C41008148 @default.
- W4361006472 hasConcept C66402592 @default.
- W4361006472 hasConcept C90673727 @default.
- W4361006472 hasConcept C94124525 @default.
- W4361006472 hasConceptScore W4361006472C154945302 @default.
- W4361006472 hasConceptScore W4361006472C157659113 @default.
- W4361006472 hasConceptScore W4361006472C177264268 @default.
- W4361006472 hasConceptScore W4361006472C199360897 @default.
- W4361006472 hasConceptScore W4361006472C23123220 @default.
- W4361006472 hasConceptScore W4361006472C2522767166 @default.
- W4361006472 hasConceptScore W4361006472C2524010 @default.
- W4361006472 hasConceptScore W4361006472C33923547 @default.
- W4361006472 hasConceptScore W4361006472C41008148 @default.
- W4361006472 hasConceptScore W4361006472C66402592 @default.
- W4361006472 hasConceptScore W4361006472C90673727 @default.
- W4361006472 hasConceptScore W4361006472C94124525 @default.
- W4361006472 hasIssue "2" @default.
- W4361006472 hasLocation W43610064721 @default.
- W4361006472 hasOpenAccess W4361006472 @default.
- W4361006472 hasPrimaryLocation W43610064721 @default.
- W4361006472 hasRelatedWork W1597238586 @default.
- W4361006472 hasRelatedWork W1600594996 @default.
- W4361006472 hasRelatedWork W2101306587 @default.
- W4361006472 hasRelatedWork W2119135658 @default.
- W4361006472 hasRelatedWork W2153799433 @default.
- W4361006472 hasRelatedWork W2319296695 @default.
- W4361006472 hasRelatedWork W2326857978 @default.
- W4361006472 hasRelatedWork W2766283363 @default.
- W4361006472 hasRelatedWork W2944428657 @default.
- W4361006472 hasRelatedWork W4361006472 @default.
- W4361006472 hasVolume "3" @default.
- W4361006472 isParatext "false" @default.
- W4361006472 isRetracted "false" @default.
- W4361006472 workType "article" @default.