Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361006750> ?p ?o ?g. }
- W4361006750 endingPage "1113" @default.
- W4361006750 startingPage "1103" @default.
- W4361006750 abstract "Clinical prediction models providing binary categorizations for clinical decision support require the selection of a probability threshold, or cutpoint, to classify individuals. Existing cutpoint selection approaches typically optimize test-specific metrics, including sensitivity and specificity, but overlook the consequences of correct or incorrect classification. We introduce a new cutpoint selection approach considering downstream consequences using net monetary benefit (NMB) and through simulations compared it with alternative approaches in 2 use-cases: (i) preventing intensive care unit readmission and (ii) preventing inpatient falls.Parameter estimates for costs and effectiveness from prior studies were included in Monte Carlo simulations. For each use-case, we simulated the expected NMB resulting from the model-guided decision using a range of cutpoint selection approaches, including our new value-optimizing approach. Sensitivity analyses applied alternative event rates, model discrimination, and calibration performance.The proposed approach that considered expected downstream consequences was frequently NMB-maximizing compared with other methods. Sensitivity analysis demonstrated that it was or closely tracked the optimal strategy under a range of scenarios. Under scenarios of relatively low event rates and discrimination that may be considered realistic for intensive care (prevalence = 0.025, area under the receiver operating characteristic curve [AUC] = 0.70) and falls (prevalence = 0.036, AUC = 0.70), our proposed cutpoint method was either the best or similar to the best of the compared methods regarding NMB, and was robust to model miscalibration.Our results highlight the potential value of conditioning cutpoints on the implementation setting, particularly for rare and costly events, which are often the target of prediction model development research.This study proposes a cutpoint selection method that may optimize clinical decision support systems toward value-based care." @default.
- W4361006750 created "2023-03-30" @default.
- W4361006750 creator A5025568567 @default.
- W4361006750 creator A5068703784 @default.
- W4361006750 creator A5069279064 @default.
- W4361006750 creator A5080221912 @default.
- W4361006750 date "2023-03-25" @default.
- W4361006750 modified "2023-10-17" @default.
- W4361006750 title "Integrating economic considerations into cutpoint selection may help align clinical decision support toward value-based healthcare" @default.
- W4361006750 cites W1844981334 @default.
- W4361006750 cites W1887790309 @default.
- W4361006750 cites W1921733975 @default.
- W4361006750 cites W1975353798 @default.
- W4361006750 cites W1976430876 @default.
- W4361006750 cites W1981900724 @default.
- W4361006750 cites W1997022625 @default.
- W4361006750 cites W2000228088 @default.
- W4361006750 cites W2017217416 @default.
- W4361006750 cites W2045030989 @default.
- W4361006750 cites W2056264597 @default.
- W4361006750 cites W2061382057 @default.
- W4361006750 cites W2069607979 @default.
- W4361006750 cites W2071197092 @default.
- W4361006750 cites W2071853067 @default.
- W4361006750 cites W2084164487 @default.
- W4361006750 cites W2084938822 @default.
- W4361006750 cites W2103848163 @default.
- W4361006750 cites W2125833000 @default.
- W4361006750 cites W2140304156 @default.
- W4361006750 cites W2150780222 @default.
- W4361006750 cites W2150892780 @default.
- W4361006750 cites W2152964728 @default.
- W4361006750 cites W2158229865 @default.
- W4361006750 cites W2171370925 @default.
- W4361006750 cites W2266465996 @default.
- W4361006750 cites W2588297158 @default.
- W4361006750 cites W2591774834 @default.
- W4361006750 cites W2600903904 @default.
- W4361006750 cites W2617595617 @default.
- W4361006750 cites W2779156646 @default.
- W4361006750 cites W2782363191 @default.
- W4361006750 cites W2808649887 @default.
- W4361006750 cites W2889417967 @default.
- W4361006750 cites W2966926585 @default.
- W4361006750 cites W2968891177 @default.
- W4361006750 cites W2977262858 @default.
- W4361006750 cites W2981991941 @default.
- W4361006750 cites W3010261457 @default.
- W4361006750 cites W3122426397 @default.
- W4361006750 cites W3123140680 @default.
- W4361006750 cites W3176838620 @default.
- W4361006750 cites W3210230840 @default.
- W4361006750 cites W4223959434 @default.
- W4361006750 cites W4292148920 @default.
- W4361006750 doi "https://doi.org/10.1093/jamia/ocad042" @default.
- W4361006750 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36970849" @default.
- W4361006750 hasPublicationYear "2023" @default.
- W4361006750 type Work @default.
- W4361006750 citedByCount "1" @default.
- W4361006750 countsByYear W43610067502023 @default.
- W4361006750 crossrefType "journal-article" @default.
- W4361006750 hasAuthorship W4361006750A5025568567 @default.
- W4361006750 hasAuthorship W4361006750A5068703784 @default.
- W4361006750 hasAuthorship W4361006750A5069279064 @default.
- W4361006750 hasAuthorship W4361006750A5080221912 @default.
- W4361006750 hasBestOaLocation W43610067501 @default.
- W4361006750 hasConcept C105795698 @default.
- W4361006750 hasConcept C119857082 @default.
- W4361006750 hasConcept C124101348 @default.
- W4361006750 hasConcept C127413603 @default.
- W4361006750 hasConcept C154945302 @default.
- W4361006750 hasConcept C159985019 @default.
- W4361006750 hasConcept C160735492 @default.
- W4361006750 hasConcept C162324750 @default.
- W4361006750 hasConcept C165838908 @default.
- W4361006750 hasConcept C192562407 @default.
- W4361006750 hasConcept C19499675 @default.
- W4361006750 hasConcept C204323151 @default.
- W4361006750 hasConcept C21200559 @default.
- W4361006750 hasConcept C24326235 @default.
- W4361006750 hasConcept C33923547 @default.
- W4361006750 hasConcept C41008148 @default.
- W4361006750 hasConcept C50522688 @default.
- W4361006750 hasConcept C58471807 @default.
- W4361006750 hasConcept C81917197 @default.
- W4361006750 hasConcept C93959086 @default.
- W4361006750 hasConceptScore W4361006750C105795698 @default.
- W4361006750 hasConceptScore W4361006750C119857082 @default.
- W4361006750 hasConceptScore W4361006750C124101348 @default.
- W4361006750 hasConceptScore W4361006750C127413603 @default.
- W4361006750 hasConceptScore W4361006750C154945302 @default.
- W4361006750 hasConceptScore W4361006750C159985019 @default.
- W4361006750 hasConceptScore W4361006750C160735492 @default.
- W4361006750 hasConceptScore W4361006750C162324750 @default.
- W4361006750 hasConceptScore W4361006750C165838908 @default.
- W4361006750 hasConceptScore W4361006750C192562407 @default.
- W4361006750 hasConceptScore W4361006750C19499675 @default.
- W4361006750 hasConceptScore W4361006750C204323151 @default.