Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361009864> ?p ?o ?g. }
- W4361009864 endingPage "140" @default.
- W4361009864 startingPage "140" @default.
- W4361009864 abstract "The positive and negative terrains (P–N terrains) of the Loess Plateau of China are important geographical topography elements for measuring the degree of surface erosion and distinguishing the types of landforms. Loess shoulder-lines are an important terrain feature in the Loess Plateau and are often used as a criterion for distinguishing P–N terrains. The extraction of shoulder lines is important for predicting erosion and recognising a gully head. However, existing extraction algorithms for loess shoulder-lines in areas with insignificant slopes need to be improved. This study proposes a regional fusion (RF) method that integrates the slope variation-based method and region-growing algorithm to extract loess shoulder-lines based on a Digital Elevation Model (DEM) at a spatial resolution of 5 m. The RF method introduces different terrain factors into the growth standards of the region-growing algorithm to extract loess-shoulder lines. First, we employed a slope-variation-based method to build the initial set of loess shoulder-lines and used the difference between the smoothed and real DEMs to extract the initial set for the N terrain. Second, the region-growing algorithm with improved growth standards was used to generate a complete area of the candidate region of the loess shoulder-lines and the N terrain, which were fused to generate and integrate contours to eliminate the discontinuity. Finally, loess shoulder-lines were identified by detecting the edge of the integrated contour, with results exhibiting congregate points or spurs, eliminated via a hit-or-miss transform to optimise the final results. Validation of the experimental area of loess ridges and hills in Shaanxi Province showed that the accuracy of the RF method based on the Euclidean distance offset percentage within a 10-m deviation range reached 96.9% compared to the manual digitalisation method. Based on the mean absolute error and standard absolute deviation values, compared with Zhou’s improved snake model and the bidirectional DEM relief-shading methods, the proposed RF method extracted the loess shoulder-lines highly accurately." @default.
- W4361009864 created "2023-03-30" @default.
- W4361009864 creator A5000832305 @default.
- W4361009864 creator A5011170346 @default.
- W4361009864 creator A5011760791 @default.
- W4361009864 creator A5029030051 @default.
- W4361009864 creator A5033756688 @default.
- W4361009864 creator A5033790417 @default.
- W4361009864 creator A5055560112 @default.
- W4361009864 creator A5060729400 @default.
- W4361009864 creator A5062311286 @default.
- W4361009864 date "2023-03-24" @default.
- W4361009864 modified "2023-10-14" @default.
- W4361009864 title "An Optimised Region-Growing Algorithm for Extraction of the Loess Shoulder-Line from DEMs" @default.
- W4361009864 cites W1981469180 @default.
- W4361009864 cites W2022686119 @default.
- W4361009864 cites W2041642242 @default.
- W4361009864 cites W2049647840 @default.
- W4361009864 cites W2054068298 @default.
- W4361009864 cites W2054876240 @default.
- W4361009864 cites W2067191022 @default.
- W4361009864 cites W2077907175 @default.
- W4361009864 cites W2084648896 @default.
- W4361009864 cites W2087884757 @default.
- W4361009864 cites W2399880127 @default.
- W4361009864 cites W2611137312 @default.
- W4361009864 cites W2774791084 @default.
- W4361009864 cites W2807185283 @default.
- W4361009864 cites W2999611154 @default.
- W4361009864 cites W3006614011 @default.
- W4361009864 cites W3042600942 @default.
- W4361009864 cites W3074402900 @default.
- W4361009864 cites W3088792343 @default.
- W4361009864 cites W3091665395 @default.
- W4361009864 cites W3116395368 @default.
- W4361009864 cites W3126516487 @default.
- W4361009864 cites W3174338289 @default.
- W4361009864 cites W3181492667 @default.
- W4361009864 cites W3207555782 @default.
- W4361009864 cites W4214669428 @default.
- W4361009864 doi "https://doi.org/10.3390/ijgi12040140" @default.
- W4361009864 hasPublicationYear "2023" @default.
- W4361009864 type Work @default.
- W4361009864 citedByCount "0" @default.
- W4361009864 crossrefType "journal-article" @default.
- W4361009864 hasAuthorship W4361009864A5000832305 @default.
- W4361009864 hasAuthorship W4361009864A5011170346 @default.
- W4361009864 hasAuthorship W4361009864A5011760791 @default.
- W4361009864 hasAuthorship W4361009864A5029030051 @default.
- W4361009864 hasAuthorship W4361009864A5033756688 @default.
- W4361009864 hasAuthorship W4361009864A5033790417 @default.
- W4361009864 hasAuthorship W4361009864A5055560112 @default.
- W4361009864 hasAuthorship W4361009864A5060729400 @default.
- W4361009864 hasAuthorship W4361009864A5062311286 @default.
- W4361009864 hasBestOaLocation W43610098641 @default.
- W4361009864 hasConcept C108497213 @default.
- W4361009864 hasConcept C11413529 @default.
- W4361009864 hasConcept C114793014 @default.
- W4361009864 hasConcept C123157820 @default.
- W4361009864 hasConcept C127313418 @default.
- W4361009864 hasConcept C159390177 @default.
- W4361009864 hasConcept C161840515 @default.
- W4361009864 hasConcept C181843262 @default.
- W4361009864 hasConcept C185515318 @default.
- W4361009864 hasConcept C205649164 @default.
- W4361009864 hasConcept C2993008072 @default.
- W4361009864 hasConcept C41008148 @default.
- W4361009864 hasConcept C58640448 @default.
- W4361009864 hasConcept C62649853 @default.
- W4361009864 hasConceptScore W4361009864C108497213 @default.
- W4361009864 hasConceptScore W4361009864C11413529 @default.
- W4361009864 hasConceptScore W4361009864C114793014 @default.
- W4361009864 hasConceptScore W4361009864C123157820 @default.
- W4361009864 hasConceptScore W4361009864C127313418 @default.
- W4361009864 hasConceptScore W4361009864C159390177 @default.
- W4361009864 hasConceptScore W4361009864C161840515 @default.
- W4361009864 hasConceptScore W4361009864C181843262 @default.
- W4361009864 hasConceptScore W4361009864C185515318 @default.
- W4361009864 hasConceptScore W4361009864C205649164 @default.
- W4361009864 hasConceptScore W4361009864C2993008072 @default.
- W4361009864 hasConceptScore W4361009864C41008148 @default.
- W4361009864 hasConceptScore W4361009864C58640448 @default.
- W4361009864 hasConceptScore W4361009864C62649853 @default.
- W4361009864 hasFunder F4320321001 @default.
- W4361009864 hasIssue "4" @default.
- W4361009864 hasLocation W43610098641 @default.
- W4361009864 hasOpenAccess W4361009864 @default.
- W4361009864 hasPrimaryLocation W43610098641 @default.
- W4361009864 hasRelatedWork W2054876240 @default.
- W4361009864 hasRelatedWork W2134245700 @default.
- W4361009864 hasRelatedWork W2263997956 @default.
- W4361009864 hasRelatedWork W2349425272 @default.
- W4361009864 hasRelatedWork W2355476906 @default.
- W4361009864 hasRelatedWork W2360594547 @default.
- W4361009864 hasRelatedWork W2364662147 @default.
- W4361009864 hasRelatedWork W2397044603 @default.
- W4361009864 hasRelatedWork W2906828163 @default.
- W4361009864 hasRelatedWork W3152192724 @default.