Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361010673> ?p ?o ?g. }
- W4361010673 endingPage "1288" @default.
- W4361010673 startingPage "1288" @default.
- W4361010673 abstract "Floods can cause huge damage to society, the economy, and the environment. As a result, it is vital to determine the extent and type of land cover in flooded areas quickly and accurately in order to facilitate disaster relief and mitigation efforts. Synthetic aperture radar (SAR) is an all-weather, 24 h data source used to extract information about flood inundations, and its primary aim is to extract water body information for flood monitoring. In this study, we have studied the backscattering characteristics of water and non-water, combined the threshold segmentation method with Markov random fields (MRF), and embedded simulated annealing (SA) in the process of image noise reduction, resulting in the development of a water extraction method KI-MRF-SA with high accuracy in classification and high automation. Furthermore, object-scale adaptive convolutional neural networks (OSA-CNN) are introduced for the classification of optical images before the flood in order to provide reference data for flood inundation analysis. The method proposed in this study consists of the following three steps: (1) The Kittler and Illingworth (KI) thresholding algorithm is used for the segmentation of SAR images in order to determine the initial flood inundation extent; (2) MRF and SA algorithms are employed as a means to optimize the initial flood inundation extent, and the results are combined across multiple polarizations by using an intersection operation to determine the final flood inundation extent; and (3) As part of the flood mapping process, land cover types before the flood are classified using OSA-CNN and combined with flood inundation extents. According to the experimental results, it is evident that the proposed KI-MRF-SA method is capable of distinguishing water from non-water with significantly higher accuracy (3–5% improvement in the overall accuracy) than conventional thresholding methods. Combined with the classification method of OSA-CNN proposed in our earlier research, the overall classification accuracy of flood-affected areas could reach 92.7%." @default.
- W4361010673 created "2023-03-30" @default.
- W4361010673 creator A5034747911 @default.
- W4361010673 creator A5058401165 @default.
- W4361010673 creator A5086770241 @default.
- W4361010673 date "2023-03-24" @default.
- W4361010673 modified "2023-09-25" @default.
- W4361010673 title "Extraction and Classification of Flood-Affected Areas Based on MRF and Deep Learning" @default.
- W4361010673 cites W1482728681 @default.
- W4361010673 cites W1912692631 @default.
- W4361010673 cites W1977167567 @default.
- W4361010673 cites W1982912199 @default.
- W4361010673 cites W1990446846 @default.
- W4361010673 cites W1993345130 @default.
- W4361010673 cites W1996567053 @default.
- W4361010673 cites W1999251352 @default.
- W4361010673 cites W2000535832 @default.
- W4361010673 cites W2007333059 @default.
- W4361010673 cites W2022606568 @default.
- W4361010673 cites W2024060531 @default.
- W4361010673 cites W2027091505 @default.
- W4361010673 cites W2027502206 @default.
- W4361010673 cites W2034073840 @default.
- W4361010673 cites W2037385122 @default.
- W4361010673 cites W2039956000 @default.
- W4361010673 cites W2043185941 @default.
- W4361010673 cites W2056760934 @default.
- W4361010673 cites W2060677109 @default.
- W4361010673 cites W2065931038 @default.
- W4361010673 cites W2078571032 @default.
- W4361010673 cites W2101661671 @default.
- W4361010673 cites W2110519070 @default.
- W4361010673 cites W2111320133 @default.
- W4361010673 cites W2133059825 @default.
- W4361010673 cites W2138002125 @default.
- W4361010673 cites W2140624467 @default.
- W4361010673 cites W2159432279 @default.
- W4361010673 cites W2170589321 @default.
- W4361010673 cites W2183182206 @default.
- W4361010673 cites W2284737902 @default.
- W4361010673 cites W2292718396 @default.
- W4361010673 cites W2343675796 @default.
- W4361010673 cites W2462089918 @default.
- W4361010673 cites W2560520217 @default.
- W4361010673 cites W2598551616 @default.
- W4361010673 cites W2604086375 @default.
- W4361010673 cites W2625788020 @default.
- W4361010673 cites W2633722567 @default.
- W4361010673 cites W2727875856 @default.
- W4361010673 cites W2751895300 @default.
- W4361010673 cites W2769289024 @default.
- W4361010673 cites W2782522152 @default.
- W4361010673 cites W2783165089 @default.
- W4361010673 cites W2784203435 @default.
- W4361010673 cites W2793777886 @default.
- W4361010673 cites W2800384134 @default.
- W4361010673 cites W2803946774 @default.
- W4361010673 cites W2804458818 @default.
- W4361010673 cites W2886312349 @default.
- W4361010673 cites W2893423001 @default.
- W4361010673 cites W2901268191 @default.
- W4361010673 cites W2909158354 @default.
- W4361010673 cites W2945581949 @default.
- W4361010673 cites W2989014883 @default.
- W4361010673 cites W3103856189 @default.
- W4361010673 cites W3109750868 @default.
- W4361010673 doi "https://doi.org/10.3390/w15071288" @default.
- W4361010673 hasPublicationYear "2023" @default.
- W4361010673 type Work @default.
- W4361010673 citedByCount "0" @default.
- W4361010673 crossrefType "journal-article" @default.
- W4361010673 hasAuthorship W4361010673A5034747911 @default.
- W4361010673 hasAuthorship W4361010673A5058401165 @default.
- W4361010673 hasAuthorship W4361010673A5086770241 @default.
- W4361010673 hasBestOaLocation W43610106731 @default.
- W4361010673 hasConcept C108583219 @default.
- W4361010673 hasConcept C115961682 @default.
- W4361010673 hasConcept C119857082 @default.
- W4361010673 hasConcept C120417685 @default.
- W4361010673 hasConcept C127413603 @default.
- W4361010673 hasConcept C147176958 @default.
- W4361010673 hasConcept C153180895 @default.
- W4361010673 hasConcept C154945302 @default.
- W4361010673 hasConcept C166957645 @default.
- W4361010673 hasConcept C191178318 @default.
- W4361010673 hasConcept C205649164 @default.
- W4361010673 hasConcept C2780648208 @default.
- W4361010673 hasConcept C39432304 @default.
- W4361010673 hasConcept C41008148 @default.
- W4361010673 hasConcept C4792198 @default.
- W4361010673 hasConcept C62649853 @default.
- W4361010673 hasConcept C74256435 @default.
- W4361010673 hasConcept C81363708 @default.
- W4361010673 hasConcept C87360688 @default.
- W4361010673 hasConcept C89600930 @default.
- W4361010673 hasConceptScore W4361010673C108583219 @default.
- W4361010673 hasConceptScore W4361010673C115961682 @default.
- W4361010673 hasConceptScore W4361010673C119857082 @default.