Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361010808> ?p ?o ?g. }
- W4361010808 endingPage "1764" @default.
- W4361010808 startingPage "1742" @default.
- W4361010808 abstract "Abstract Debris flows are a hazard in mountainous regions. Cost‐effective, long‐term studies of debris‐flow torrents, however, are rare, leading to uncertainties in hazard assessment and hazard prevention. Here, we address the question of whether cost‐effective remote sensing techniques can be applied for assessment of mountain torrents and possibly further gather accurate, long‐term information on the evolution of the catchment. Torrents prone to debris flows are often devoid of vegetation in the near channel area and hence can be well captured with photogrammetrically derived methods using uncrewed aerial vehicle (UAV) surveys. The possibility of automatically extracting specific torrent parameters from high‐resolution terrain models, such as cross‐section area or gradient, is investigated. The presented methodology yields continuous and automatically derived geometrical parameters such as torrent bed width, inclination and cross‐section area, which is a major advantage compared with point‐based, often dangerous field surveys. Their cross‐validation with field measurements shows strong agreement. Those parameters are accurate along sharply incised sections with strong limitations along sections with steep adjacent slopes and/or dense vegetation. The information along the torrent allows fast identification of key sections and weak spots which can be precisely evaluated in the field. The study highlights that proper classification of real ground points poses the key challenge. We show that photogrammetric routines to derive a high‐resolution digital terrain model (DTM) are limited in the case of dense vegetation coverage. In such cases, LiDAR surveys have clear advantages even though they are also limited by very dense vegetation. We find that UAV data can be used for an objective method of estimating debris‐flow torrent geometric properties. And the introduced approaches therefore build a stepping stone towards a more comprehensive, reproducible and objective assessment of torrent processes and predispositions. However, ground‐referencing fieldwork remains essential, and further research on remote sensing supported hazard assessment of debris‐flow‐prone torrents is indispensable." @default.
- W4361010808 created "2023-03-30" @default.
- W4361010808 creator A5013761704 @default.
- W4361010808 creator A5028513822 @default.
- W4361010808 creator A5028598221 @default.
- W4361010808 creator A5045425450 @default.
- W4361010808 creator A5047318229 @default.
- W4361010808 creator A5069937851 @default.
- W4361010808 creator A5081185355 @default.
- W4361010808 creator A5082086403 @default.
- W4361010808 date "2023-04-27" @default.
- W4361010808 modified "2023-10-18" @default.
- W4361010808 title "Towards an automated acquisition and parametrization of debris‐flow prone torrent channel properties based on photogrammetric‐derived uncrewed aerial vehicle data" @default.
- W4361010808 cites W1606571603 @default.
- W4361010808 cites W167459363 @default.
- W4361010808 cites W1833791114 @default.
- W4361010808 cites W1981769764 @default.
- W4361010808 cites W2011551841 @default.
- W4361010808 cites W2022133743 @default.
- W4361010808 cites W2024556731 @default.
- W4361010808 cites W2027254180 @default.
- W4361010808 cites W2029057972 @default.
- W4361010808 cites W2040617484 @default.
- W4361010808 cites W2097033979 @default.
- W4361010808 cites W2126765760 @default.
- W4361010808 cites W2159256373 @default.
- W4361010808 cites W2187099377 @default.
- W4361010808 cites W2235571426 @default.
- W4361010808 cites W2436494909 @default.
- W4361010808 cites W2464230774 @default.
- W4361010808 cites W2509059488 @default.
- W4361010808 cites W2761394916 @default.
- W4361010808 cites W2889747871 @default.
- W4361010808 cites W2889886194 @default.
- W4361010808 cites W2966705629 @default.
- W4361010808 cites W2971714605 @default.
- W4361010808 cites W2981386717 @default.
- W4361010808 cites W2998811304 @default.
- W4361010808 cites W3061690163 @default.
- W4361010808 cites W3144568235 @default.
- W4361010808 cites W3193008422 @default.
- W4361010808 cites W3195230107 @default.
- W4361010808 cites W4225102745 @default.
- W4361010808 cites W4229855922 @default.
- W4361010808 cites W4281256191 @default.
- W4361010808 cites W4282931356 @default.
- W4361010808 cites W4311698113 @default.
- W4361010808 doi "https://doi.org/10.1002/esp.5585" @default.
- W4361010808 hasPublicationYear "2023" @default.
- W4361010808 type Work @default.
- W4361010808 citedByCount "1" @default.
- W4361010808 countsByYear W43610108082023 @default.
- W4361010808 crossrefType "journal-article" @default.
- W4361010808 hasAuthorship W4361010808A5013761704 @default.
- W4361010808 hasAuthorship W4361010808A5028513822 @default.
- W4361010808 hasAuthorship W4361010808A5028598221 @default.
- W4361010808 hasAuthorship W4361010808A5045425450 @default.
- W4361010808 hasAuthorship W4361010808A5047318229 @default.
- W4361010808 hasAuthorship W4361010808A5069937851 @default.
- W4361010808 hasAuthorship W4361010808A5081185355 @default.
- W4361010808 hasAuthorship W4361010808A5082086403 @default.
- W4361010808 hasBestOaLocation W43610108081 @default.
- W4361010808 hasConcept C111368507 @default.
- W4361010808 hasConcept C117455697 @default.
- W4361010808 hasConcept C127162648 @default.
- W4361010808 hasConcept C127313418 @default.
- W4361010808 hasConcept C142724271 @default.
- W4361010808 hasConcept C161840515 @default.
- W4361010808 hasConcept C178790620 @default.
- W4361010808 hasConcept C181843262 @default.
- W4361010808 hasConcept C185592680 @default.
- W4361010808 hasConcept C205649164 @default.
- W4361010808 hasConcept C2776023875 @default.
- W4361010808 hasConcept C2776133958 @default.
- W4361010808 hasConcept C2776643431 @default.
- W4361010808 hasConcept C31258907 @default.
- W4361010808 hasConcept C41008148 @default.
- W4361010808 hasConcept C49261128 @default.
- W4361010808 hasConcept C51399673 @default.
- W4361010808 hasConcept C58640448 @default.
- W4361010808 hasConcept C62649853 @default.
- W4361010808 hasConcept C71924100 @default.
- W4361010808 hasConceptScore W4361010808C111368507 @default.
- W4361010808 hasConceptScore W4361010808C117455697 @default.
- W4361010808 hasConceptScore W4361010808C127162648 @default.
- W4361010808 hasConceptScore W4361010808C127313418 @default.
- W4361010808 hasConceptScore W4361010808C142724271 @default.
- W4361010808 hasConceptScore W4361010808C161840515 @default.
- W4361010808 hasConceptScore W4361010808C178790620 @default.
- W4361010808 hasConceptScore W4361010808C181843262 @default.
- W4361010808 hasConceptScore W4361010808C185592680 @default.
- W4361010808 hasConceptScore W4361010808C205649164 @default.
- W4361010808 hasConceptScore W4361010808C2776023875 @default.
- W4361010808 hasConceptScore W4361010808C2776133958 @default.
- W4361010808 hasConceptScore W4361010808C2776643431 @default.
- W4361010808 hasConceptScore W4361010808C31258907 @default.
- W4361010808 hasConceptScore W4361010808C41008148 @default.
- W4361010808 hasConceptScore W4361010808C49261128 @default.