Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361017907> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4361017907 endingPage "10" @default.
- W4361017907 startingPage "1" @default.
- W4361017907 abstract "The shortage of personnel and the high cost have become a major pain point in the current safety supervision work of the inspectors. Aiming at the problem that the aircraft maintenance inspector could not visit the scene in person during the epidemic, a remote safety supervision platform was built based on intelligent glasses and 5G network, and the real-time monitoring of the aircraft skin rivet status was realized. And a method of aviation rivet classification and anomaly detection based on deep learning algorithm was proposed. Firstly, according to the appearance of rivet head, the aviation rivet is classified, the data set of aviation rivet is made, and the aviation rivet classification and anomaly detection model are constructed. Evaluate the detection results from such indicators as confidence, precision, recall rate, and mAP and compare the algorithm with the detection results of Yolox-s, Yolox-m, Yolov5-s, Yolov5-m, and Yolov4. The results show that (1) the algorithm proposed in this paper can realize the classification of aviation rivets and the detection of abnormal conditions, the confidence of the detection results is more than 90%, and the average precision, recall, and AP value are above 95%, 85%, and 88%, respectively. (2) The order of rivet classification and abnormal detection effect from good to bad is Philips screws, round head rivets, flat head rivets, countersunk head rivets, blind rivets, and abnormal condition. (3) Compared with other algorithms, the aviation rivet classification abnormal target detection based on deep learning has absolute advantages in accuracy and speed." @default.
- W4361017907 created "2023-03-30" @default.
- W4361017907 creator A5015195412 @default.
- W4361017907 date "2023-03-27" @default.
- W4361017907 modified "2023-09-29" @default.
- W4361017907 title "Aviation Rivet Classification and Anomaly Detection Based on Deep Learning" @default.
- W4361017907 cites W2079190918 @default.
- W4361017907 cites W2156427303 @default.
- W4361017907 cites W3081626124 @default.
- W4361017907 cites W3136021864 @default.
- W4361017907 cites W4225726009 @default.
- W4361017907 doi "https://doi.org/10.1155/2023/3546838" @default.
- W4361017907 hasPublicationYear "2023" @default.
- W4361017907 type Work @default.
- W4361017907 citedByCount "0" @default.
- W4361017907 crossrefType "journal-article" @default.
- W4361017907 hasAuthorship W4361017907A5015195412 @default.
- W4361017907 hasBestOaLocation W43610179071 @default.
- W4361017907 hasConcept C127413603 @default.
- W4361017907 hasConcept C146978453 @default.
- W4361017907 hasConcept C154945302 @default.
- W4361017907 hasConcept C2908613842 @default.
- W4361017907 hasConcept C41008148 @default.
- W4361017907 hasConcept C57769158 @default.
- W4361017907 hasConcept C66938386 @default.
- W4361017907 hasConcept C739882 @default.
- W4361017907 hasConcept C74448152 @default.
- W4361017907 hasConceptScore W4361017907C127413603 @default.
- W4361017907 hasConceptScore W4361017907C146978453 @default.
- W4361017907 hasConceptScore W4361017907C154945302 @default.
- W4361017907 hasConceptScore W4361017907C2908613842 @default.
- W4361017907 hasConceptScore W4361017907C41008148 @default.
- W4361017907 hasConceptScore W4361017907C57769158 @default.
- W4361017907 hasConceptScore W4361017907C66938386 @default.
- W4361017907 hasConceptScore W4361017907C739882 @default.
- W4361017907 hasConceptScore W4361017907C74448152 @default.
- W4361017907 hasLocation W43610179071 @default.
- W4361017907 hasOpenAccess W4361017907 @default.
- W4361017907 hasPrimaryLocation W43610179071 @default.
- W4361017907 hasRelatedWork W2045257355 @default.
- W4361017907 hasRelatedWork W2098364106 @default.
- W4361017907 hasRelatedWork W2141101502 @default.
- W4361017907 hasRelatedWork W3114285812 @default.
- W4361017907 hasRelatedWork W3188833398 @default.
- W4361017907 hasRelatedWork W4210746647 @default.
- W4361017907 hasRelatedWork W4232873079 @default.
- W4361017907 hasRelatedWork W4327595716 @default.
- W4361017907 hasRelatedWork W576178591 @default.
- W4361017907 hasRelatedWork W1817828168 @default.
- W4361017907 hasVolume "2023" @default.
- W4361017907 isParatext "false" @default.
- W4361017907 isRetracted "false" @default.
- W4361017907 workType "article" @default.