Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361018082> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4361018082 abstract "People's perspectives about products, services, events and other persons are widely available on social media and they represent an important feedback for organizations and governments. In the last decade, with the increased amount of online posted opinions, sentiment analysis (SA) started gaining higher attention from researchers. The aim of SA, an application of natural language processing, is to analyze sentiments within text, and in the case of this work is to extract sentiments associated with positive or negative polarities. Arabic language is of high interest as it is one of the widely used languages. Unfortunately, Arabic SA has many challenges due the special characteristics of the Arabic language which limited the number of works in this area and those that concern the Iraqi dialect in particular. This paper proposes some enhanced classifiers based on hybrid machine learning algorithms combined with two proposed preprocessing steps. These preprocessing steps along with the proposed hybrid classifiers enhance the classification accuracy for the Iraqi dialect reviews which are collected from online movie reviews. The results show up to 12.5% enhancement in the classification performance as compared to the conventional preprocessing and classifiers." @default.
- W4361018082 created "2023-03-30" @default.
- W4361018082 creator A5021127772 @default.
- W4361018082 creator A5087613424 @default.
- W4361018082 creator A5090718767 @default.
- W4361018082 date "2023-01-01" @default.
- W4361018082 modified "2023-10-17" @default.
- W4361018082 title "Sentiment analysis in arabic language using machine learning: Iraqi dialect case study" @default.
- W4361018082 cites W2083525772 @default.
- W4361018082 cites W2148506018 @default.
- W4361018082 cites W2615369478 @default.
- W4361018082 cites W2767285835 @default.
- W4361018082 cites W2884303673 @default.
- W4361018082 cites W2894812750 @default.
- W4361018082 cites W2900897701 @default.
- W4361018082 cites W2905717737 @default.
- W4361018082 cites W2908092214 @default.
- W4361018082 cites W2909471801 @default.
- W4361018082 cites W2912137201 @default.
- W4361018082 cites W2914363692 @default.
- W4361018082 cites W2992999841 @default.
- W4361018082 cites W3013313823 @default.
- W4361018082 cites W3033291431 @default.
- W4361018082 cites W3111704875 @default.
- W4361018082 doi "https://doi.org/10.1063/5.0111448" @default.
- W4361018082 hasPublicationYear "2023" @default.
- W4361018082 type Work @default.
- W4361018082 citedByCount "0" @default.
- W4361018082 crossrefType "proceedings-article" @default.
- W4361018082 hasAuthorship W4361018082A5021127772 @default.
- W4361018082 hasAuthorship W4361018082A5087613424 @default.
- W4361018082 hasAuthorship W4361018082A5090718767 @default.
- W4361018082 hasBestOaLocation W43610180821 @default.
- W4361018082 hasConcept C119857082 @default.
- W4361018082 hasConcept C12267149 @default.
- W4361018082 hasConcept C136764020 @default.
- W4361018082 hasConcept C138885662 @default.
- W4361018082 hasConcept C154945302 @default.
- W4361018082 hasConcept C204321447 @default.
- W4361018082 hasConcept C34736171 @default.
- W4361018082 hasConcept C41008148 @default.
- W4361018082 hasConcept C41895202 @default.
- W4361018082 hasConcept C518677369 @default.
- W4361018082 hasConcept C66402592 @default.
- W4361018082 hasConcept C96455323 @default.
- W4361018082 hasConceptScore W4361018082C119857082 @default.
- W4361018082 hasConceptScore W4361018082C12267149 @default.
- W4361018082 hasConceptScore W4361018082C136764020 @default.
- W4361018082 hasConceptScore W4361018082C138885662 @default.
- W4361018082 hasConceptScore W4361018082C154945302 @default.
- W4361018082 hasConceptScore W4361018082C204321447 @default.
- W4361018082 hasConceptScore W4361018082C34736171 @default.
- W4361018082 hasConceptScore W4361018082C41008148 @default.
- W4361018082 hasConceptScore W4361018082C41895202 @default.
- W4361018082 hasConceptScore W4361018082C518677369 @default.
- W4361018082 hasConceptScore W4361018082C66402592 @default.
- W4361018082 hasConceptScore W4361018082C96455323 @default.
- W4361018082 hasLocation W43610180821 @default.
- W4361018082 hasOpenAccess W4361018082 @default.
- W4361018082 hasPrimaryLocation W43610180821 @default.
- W4361018082 hasRelatedWork W2057854333 @default.
- W4361018082 hasRelatedWork W2288974521 @default.
- W4361018082 hasRelatedWork W2937631562 @default.
- W4361018082 hasRelatedWork W2944636446 @default.
- W4361018082 hasRelatedWork W3027572503 @default.
- W4361018082 hasRelatedWork W3107474891 @default.
- W4361018082 hasRelatedWork W3175076887 @default.
- W4361018082 hasRelatedWork W3175964988 @default.
- W4361018082 hasRelatedWork W3194539120 @default.
- W4361018082 hasRelatedWork W4205958290 @default.
- W4361018082 isParatext "false" @default.
- W4361018082 isRetracted "false" @default.
- W4361018082 workType "article" @default.