Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361020225> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4361020225 abstract "Learning based single image super resolution (SISR) task is well investigated in 2D images. However, SISR for 3D Magnetics Resonance Images (MRI) is more challenging compared to 2D, mainly due to the increased number of neural network parameters, the larger memory requirement and the limited amount of available training data. Current SISR methods for 3D volumetric images are based on Generative Adversarial Networks (GANs), especially Wasserstein GANs due to their training stability. Other common architectures in the 2D domain, e.g. transformer models, require large amounts of training data and are therefore not suitable for the limited 3D data. However, Wasserstein GANs can be problematic because they may not converge to a global optimum and thus produce blurry results. Here, we propose a new method for 3D SR based on the GAN framework. Specifically, we use instance noise to balance the GAN training. Furthermore, we use a relativistic GAN loss function and an updating feature extractor during the training process. We show that our method produces highly accurate results. We also show that we need very few training samples. In particular, we need less than 30 samples instead of thousands of training samples that are typically required in previous studies. Finally, we show improved out-of-sample results produced by our model." @default.
- W4361020225 created "2023-03-30" @default.
- W4361020225 creator A5009846068 @default.
- W4361020225 creator A5015195367 @default.
- W4361020225 creator A5030811855 @default.
- W4361020225 creator A5036553087 @default.
- W4361020225 creator A5052049065 @default.
- W4361020225 creator A5057758584 @default.
- W4361020225 date "2023-03-24" @default.
- W4361020225 modified "2023-10-09" @default.
- W4361020225 title "A Three-Player GAN for Super-Resolution in Magnetic Resonance Imaging" @default.
- W4361020225 doi "https://doi.org/10.48550/arxiv.2303.13900" @default.
- W4361020225 hasPublicationYear "2023" @default.
- W4361020225 type Work @default.
- W4361020225 citedByCount "0" @default.
- W4361020225 crossrefType "posted-content" @default.
- W4361020225 hasAuthorship W4361020225A5009846068 @default.
- W4361020225 hasAuthorship W4361020225A5015195367 @default.
- W4361020225 hasAuthorship W4361020225A5030811855 @default.
- W4361020225 hasAuthorship W4361020225A5036553087 @default.
- W4361020225 hasAuthorship W4361020225A5052049065 @default.
- W4361020225 hasAuthorship W4361020225A5057758584 @default.
- W4361020225 hasBestOaLocation W43610202251 @default.
- W4361020225 hasConcept C11413529 @default.
- W4361020225 hasConcept C115961682 @default.
- W4361020225 hasConcept C117978034 @default.
- W4361020225 hasConcept C121332964 @default.
- W4361020225 hasConcept C127413603 @default.
- W4361020225 hasConcept C138885662 @default.
- W4361020225 hasConcept C153180895 @default.
- W4361020225 hasConcept C154945302 @default.
- W4361020225 hasConcept C165801399 @default.
- W4361020225 hasConcept C21880701 @default.
- W4361020225 hasConcept C2776401178 @default.
- W4361020225 hasConcept C41008148 @default.
- W4361020225 hasConcept C41895202 @default.
- W4361020225 hasConcept C50644808 @default.
- W4361020225 hasConcept C62520636 @default.
- W4361020225 hasConcept C66322947 @default.
- W4361020225 hasConceptScore W4361020225C11413529 @default.
- W4361020225 hasConceptScore W4361020225C115961682 @default.
- W4361020225 hasConceptScore W4361020225C117978034 @default.
- W4361020225 hasConceptScore W4361020225C121332964 @default.
- W4361020225 hasConceptScore W4361020225C127413603 @default.
- W4361020225 hasConceptScore W4361020225C138885662 @default.
- W4361020225 hasConceptScore W4361020225C153180895 @default.
- W4361020225 hasConceptScore W4361020225C154945302 @default.
- W4361020225 hasConceptScore W4361020225C165801399 @default.
- W4361020225 hasConceptScore W4361020225C21880701 @default.
- W4361020225 hasConceptScore W4361020225C2776401178 @default.
- W4361020225 hasConceptScore W4361020225C41008148 @default.
- W4361020225 hasConceptScore W4361020225C41895202 @default.
- W4361020225 hasConceptScore W4361020225C50644808 @default.
- W4361020225 hasConceptScore W4361020225C62520636 @default.
- W4361020225 hasConceptScore W4361020225C66322947 @default.
- W4361020225 hasLocation W43610202251 @default.
- W4361020225 hasOpenAccess W4361020225 @default.
- W4361020225 hasPrimaryLocation W43610202251 @default.
- W4361020225 hasRelatedWork W2015538044 @default.
- W4361020225 hasRelatedWork W2016461833 @default.
- W4361020225 hasRelatedWork W2052253960 @default.
- W4361020225 hasRelatedWork W2147802381 @default.
- W4361020225 hasRelatedWork W2382607599 @default.
- W4361020225 hasRelatedWork W2760085659 @default.
- W4361020225 hasRelatedWork W2787306535 @default.
- W4361020225 hasRelatedWork W3047559776 @default.
- W4361020225 hasRelatedWork W3197541072 @default.
- W4361020225 hasRelatedWork W2480412556 @default.
- W4361020225 isParatext "false" @default.
- W4361020225 isRetracted "false" @default.
- W4361020225 workType "article" @default.