Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361026265> ?p ?o ?g. }
- W4361026265 endingPage "107210" @default.
- W4361026265 startingPage "107210" @default.
- W4361026265 abstract "In cloud platform with power battery data from large-scale electric vehicles (EVs), cloud battery management system needs to achieve various monitoring tasks, including safety, degradation, and variation analysis. The unstable data quality and deployment conditions limit the full usage of existing methods, such as model-based estimation method and machine learning algorithm. This paper presents a comprehensive data-driven assessment scheme, named as ComDAS, to improve the multi-tasks realization for cloud platform. The proposed ComDAS can be fast deployed for lithium-ion batteries of EVs, and integrates three mainly concerned aspects: capacity estimation, anomaly detection, and variation evaluation. Neural network is applied for calibration of capacity estimation to achieve higher accuracy. A risk scoring method is proposed to achieve long-scale statistics filtering in time dimension, and weeks-early risk pre-warning for anomaly detection. Considering weak labels or even no labels of cloud EV data, correlation analysis among capacity, anomaly, and variation are also calculated to conduct cross validations and reveal the coupling evolution mechanism among the three aspects. Based on the designed monitoring process for large-scale EVs, ComDAS has been deployed to a realistic cloud big-data platform in Sichuan, China. The working ComDAS can hold the capacity error within 4.5 %, obtain the risk pre-warning more than one week earlier, and maintain the variation score of all EVs into 0–100 for further detection. Hence, it proves that ComDAS can maintain satisfying real-time performance for both large-scale EV statistics and specific detection of risky EV." @default.
- W4361026265 created "2023-03-30" @default.
- W4361026265 creator A5001533541 @default.
- W4361026265 creator A5006111469 @default.
- W4361026265 creator A5018038669 @default.
- W4361026265 creator A5023672199 @default.
- W4361026265 creator A5034385538 @default.
- W4361026265 creator A5042533031 @default.
- W4361026265 creator A5061434865 @default.
- W4361026265 creator A5083736034 @default.
- W4361026265 date "2023-08-01" @default.
- W4361026265 modified "2023-10-11" @default.
- W4361026265 title "A comprehensive data-driven assessment scheme for power battery of large-scale electric vehicles in cloud platform" @default.
- W4361026265 cites W1208026423 @default.
- W4361026265 cites W1985140644 @default.
- W4361026265 cites W2530322448 @default.
- W4361026265 cites W2623017850 @default.
- W4361026265 cites W2624543473 @default.
- W4361026265 cites W2741674427 @default.
- W4361026265 cites W2782992689 @default.
- W4361026265 cites W2801929616 @default.
- W4361026265 cites W2808769958 @default.
- W4361026265 cites W2891422953 @default.
- W4361026265 cites W2899792027 @default.
- W4361026265 cites W2921970606 @default.
- W4361026265 cites W2924382816 @default.
- W4361026265 cites W2944097700 @default.
- W4361026265 cites W2944921051 @default.
- W4361026265 cites W2964403509 @default.
- W4361026265 cites W2994341517 @default.
- W4361026265 cites W2997757557 @default.
- W4361026265 cites W3001258361 @default.
- W4361026265 cites W3001404102 @default.
- W4361026265 cites W3003314881 @default.
- W4361026265 cites W3003911265 @default.
- W4361026265 cites W3009652674 @default.
- W4361026265 cites W3013364489 @default.
- W4361026265 cites W3015565725 @default.
- W4361026265 cites W3027239763 @default.
- W4361026265 cites W3030331576 @default.
- W4361026265 cites W3040708579 @default.
- W4361026265 cites W3048739265 @default.
- W4361026265 cites W3088418234 @default.
- W4361026265 cites W3089294463 @default.
- W4361026265 cites W3092669533 @default.
- W4361026265 cites W3097439325 @default.
- W4361026265 cites W3105931884 @default.
- W4361026265 cites W3108279751 @default.
- W4361026265 cites W3114581534 @default.
- W4361026265 cites W3117254276 @default.
- W4361026265 cites W3119174963 @default.
- W4361026265 cites W3126452185 @default.
- W4361026265 cites W3135142506 @default.
- W4361026265 cites W3167452794 @default.
- W4361026265 cites W3182713161 @default.
- W4361026265 cites W3186111808 @default.
- W4361026265 cites W3200695454 @default.
- W4361026265 cites W3202098842 @default.
- W4361026265 cites W3205125745 @default.
- W4361026265 cites W4210721657 @default.
- W4361026265 cites W4210973146 @default.
- W4361026265 cites W4229078502 @default.
- W4361026265 cites W4283013046 @default.
- W4361026265 doi "https://doi.org/10.1016/j.est.2023.107210" @default.
- W4361026265 hasPublicationYear "2023" @default.
- W4361026265 type Work @default.
- W4361026265 citedByCount "1" @default.
- W4361026265 crossrefType "journal-article" @default.
- W4361026265 hasAuthorship W4361026265A5001533541 @default.
- W4361026265 hasAuthorship W4361026265A5006111469 @default.
- W4361026265 hasAuthorship W4361026265A5018038669 @default.
- W4361026265 hasAuthorship W4361026265A5023672199 @default.
- W4361026265 hasAuthorship W4361026265A5034385538 @default.
- W4361026265 hasAuthorship W4361026265A5042533031 @default.
- W4361026265 hasAuthorship W4361026265A5061434865 @default.
- W4361026265 hasAuthorship W4361026265A5083736034 @default.
- W4361026265 hasConcept C105339364 @default.
- W4361026265 hasConcept C111919701 @default.
- W4361026265 hasConcept C121332964 @default.
- W4361026265 hasConcept C124101348 @default.
- W4361026265 hasConcept C127413603 @default.
- W4361026265 hasConcept C163258240 @default.
- W4361026265 hasConcept C200601418 @default.
- W4361026265 hasConcept C2778755073 @default.
- W4361026265 hasConcept C29825287 @default.
- W4361026265 hasConcept C41008148 @default.
- W4361026265 hasConcept C44154836 @default.
- W4361026265 hasConcept C555008776 @default.
- W4361026265 hasConcept C62520636 @default.
- W4361026265 hasConcept C739882 @default.
- W4361026265 hasConcept C75684735 @default.
- W4361026265 hasConcept C76155785 @default.
- W4361026265 hasConcept C79403827 @default.
- W4361026265 hasConcept C79974875 @default.
- W4361026265 hasConceptScore W4361026265C105339364 @default.
- W4361026265 hasConceptScore W4361026265C111919701 @default.
- W4361026265 hasConceptScore W4361026265C121332964 @default.
- W4361026265 hasConceptScore W4361026265C124101348 @default.