Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361029517> ?p ?o ?g. }
- W4361029517 endingPage "213" @default.
- W4361029517 startingPage "199" @default.
- W4361029517 abstract "Composition soft sensors have wide application in the distillation process. In this study, considering the limitation of the prediction ability of the composition soft sensor, a data-driven worst case model predictive control of propylene distillation column is proposed to hedge against the uncertainty of top composition. Firstly, based on the compartmental method and the dynamic mechanism model, a linear state space model of the distillation column is constructed. Aiming at dealing with the uncertainty of top propylene content caused by composition soft sensor, the data-driven uncertainty set is constructed by the combination of principal component analysis and kernel density estimation based on the historical data. Then, the certainty equivalent, traditional worst case, data-driven worst case, set-point tracking and offset-free model predictive control algorithm are designed. Finally, a case study of composition control in a propylene distillation column is carried out. Compared with other strategies, the proposed algorithm ensures the quality of the product while achieving small quality surplus and low operating cost." @default.
- W4361029517 created "2023-03-30" @default.
- W4361029517 creator A5010215964 @default.
- W4361029517 creator A5013584408 @default.
- W4361029517 creator A5067982152 @default.
- W4361029517 creator A5080409240 @default.
- W4361029517 creator A5014853306 @default.
- W4361029517 date "2023-04-01" @default.
- W4361029517 modified "2023-10-14" @default.
- W4361029517 title "Data-driven worst case model predictive control algorithm for propylene distillation column under uncertainty of top composition" @default.
- W4361029517 cites W1968763291 @default.
- W4361029517 cites W1971164603 @default.
- W4361029517 cites W1981723834 @default.
- W4361029517 cites W1991445954 @default.
- W4361029517 cites W2011416048 @default.
- W4361029517 cites W2027701333 @default.
- W4361029517 cites W2042816232 @default.
- W4361029517 cites W2073787051 @default.
- W4361029517 cites W2087011140 @default.
- W4361029517 cites W2087226406 @default.
- W4361029517 cites W2089044211 @default.
- W4361029517 cites W2100070743 @default.
- W4361029517 cites W2104694979 @default.
- W4361029517 cites W2110349823 @default.
- W4361029517 cites W2135688580 @default.
- W4361029517 cites W2346163163 @default.
- W4361029517 cites W2346460013 @default.
- W4361029517 cites W2570822839 @default.
- W4361029517 cites W2734426901 @default.
- W4361029517 cites W2776957526 @default.
- W4361029517 cites W2781646854 @default.
- W4361029517 cites W2791354555 @default.
- W4361029517 cites W2896250689 @default.
- W4361029517 cites W2908664238 @default.
- W4361029517 cites W2919264892 @default.
- W4361029517 cites W2926425062 @default.
- W4361029517 cites W2937398711 @default.
- W4361029517 cites W2975160718 @default.
- W4361029517 cites W2977855856 @default.
- W4361029517 cites W2991163611 @default.
- W4361029517 cites W2996297618 @default.
- W4361029517 cites W3000183701 @default.
- W4361029517 cites W3010056270 @default.
- W4361029517 cites W3040274799 @default.
- W4361029517 cites W3086520783 @default.
- W4361029517 cites W3095192061 @default.
- W4361029517 cites W3107323290 @default.
- W4361029517 cites W3119586660 @default.
- W4361029517 cites W3161326370 @default.
- W4361029517 cites W3192922399 @default.
- W4361029517 cites W4245770814 @default.
- W4361029517 cites W4281700649 @default.
- W4361029517 doi "https://doi.org/10.1016/j.jprocont.2023.03.001" @default.
- W4361029517 hasPublicationYear "2023" @default.
- W4361029517 type Work @default.
- W4361029517 citedByCount "1" @default.
- W4361029517 crossrefType "journal-article" @default.
- W4361029517 hasAuthorship W4361029517A5010215964 @default.
- W4361029517 hasAuthorship W4361029517A5013584408 @default.
- W4361029517 hasAuthorship W4361029517A5014853306 @default.
- W4361029517 hasAuthorship W4361029517A5067982152 @default.
- W4361029517 hasAuthorship W4361029517A5080409240 @default.
- W4361029517 hasConcept C111919701 @default.
- W4361029517 hasConcept C11413529 @default.
- W4361029517 hasConcept C115575686 @default.
- W4361029517 hasConcept C122280245 @default.
- W4361029517 hasConcept C12267149 @default.
- W4361029517 hasConcept C127413603 @default.
- W4361029517 hasConcept C154030694 @default.
- W4361029517 hasConcept C154945302 @default.
- W4361029517 hasConcept C172205157 @default.
- W4361029517 hasConcept C178790620 @default.
- W4361029517 hasConcept C182335926 @default.
- W4361029517 hasConcept C185592680 @default.
- W4361029517 hasConcept C204030448 @default.
- W4361029517 hasConcept C27438332 @default.
- W4361029517 hasConcept C2775924081 @default.
- W4361029517 hasConcept C41008148 @default.
- W4361029517 hasConcept C47446073 @default.
- W4361029517 hasConcept C98045186 @default.
- W4361029517 hasConceptScore W4361029517C111919701 @default.
- W4361029517 hasConceptScore W4361029517C11413529 @default.
- W4361029517 hasConceptScore W4361029517C115575686 @default.
- W4361029517 hasConceptScore W4361029517C122280245 @default.
- W4361029517 hasConceptScore W4361029517C12267149 @default.
- W4361029517 hasConceptScore W4361029517C127413603 @default.
- W4361029517 hasConceptScore W4361029517C154030694 @default.
- W4361029517 hasConceptScore W4361029517C154945302 @default.
- W4361029517 hasConceptScore W4361029517C172205157 @default.
- W4361029517 hasConceptScore W4361029517C178790620 @default.
- W4361029517 hasConceptScore W4361029517C182335926 @default.
- W4361029517 hasConceptScore W4361029517C185592680 @default.
- W4361029517 hasConceptScore W4361029517C204030448 @default.
- W4361029517 hasConceptScore W4361029517C27438332 @default.
- W4361029517 hasConceptScore W4361029517C2775924081 @default.
- W4361029517 hasConceptScore W4361029517C41008148 @default.
- W4361029517 hasConceptScore W4361029517C47446073 @default.
- W4361029517 hasConceptScore W4361029517C98045186 @default.