Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361208647> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4361208647 endingPage "60" @default.
- W4361208647 startingPage "39" @default.
- W4361208647 abstract "In modern, rapidly developing cities of the world, building an urban transport model requires traffic data. The lack of those data does not allow making timely management decisions on distribution of passenger flows, namely within transport flows. Currently, there are various methods and systems for counting passenger flows, such as the manual staff counts, survey and counted ticketed entries methods, and various automated technology-based systems. However, those well-known methods have their drawbacks. For this reason, the task to search for alternative methods and data sources for the study of passenger flows remains relevant. This article is based on the updated results of the study recently conducted by the author during preparation of his master’s thesis. During the study and developing previous author’s papers, data on connections of passengers to Wi-Fi routers were chosen as a data source. Since this phase of the study was conducted on the territory of Moscow transport hub, in metro and on Moscow Central Diameters (MCD), where the cars are equipped with great number of Wi-Fi routers, with free connection and Internet access, it has increased the sample Wi-Fi data array significantly. The objective of the study was to study the possibility of processing Wi-Fi data obtained from Wi-Fi scanners as a passenger flow analysis tool. The study has revealed that, on average, up to 40 % of passengers in metro and MCD cars on the studied lines use the WI-FI module turned on in their mobile devices. The results of the study have confirmed that Wi-Fi data can be used as a tool for passenger traffic analysis, but at the same time revealed the necessity to integrate them with other data sources, as well as the strong dependence of the result of Wi-Fi data processing on the technical features of the Wi-Fi scanner and its location in the vehicle during experiments. This issue contains the second part of the article." @default.
- W4361208647 created "2023-03-31" @default.
- W4361208647 creator A5091514312 @default.
- W4361208647 date "2023-03-26" @default.
- W4361208647 modified "2023-10-14" @default.
- W4361208647 title "Sample Survey of Passenger Traffic by Analysing Wi-Fi Data in Moscow Transport Hub. Part 2" @default.
- W4361208647 cites W1803723148 @default.
- W4361208647 cites W1968429208 @default.
- W4361208647 cites W2800959759 @default.
- W4361208647 cites W2898921138 @default.
- W4361208647 cites W2902175109 @default.
- W4361208647 cites W29558465 @default.
- W4361208647 cites W2963562852 @default.
- W4361208647 cites W3016579383 @default.
- W4361208647 cites W4200015247 @default.
- W4361208647 doi "https://doi.org/10.30932/1992-3252-2022-20-4-4" @default.
- W4361208647 hasPublicationYear "2023" @default.
- W4361208647 type Work @default.
- W4361208647 citedByCount "0" @default.
- W4361208647 crossrefType "journal-article" @default.
- W4361208647 hasAuthorship W4361208647A5091514312 @default.
- W4361208647 hasBestOaLocation W43612086471 @default.
- W4361208647 hasConcept C110875604 @default.
- W4361208647 hasConcept C127413603 @default.
- W4361208647 hasConcept C136764020 @default.
- W4361208647 hasConcept C185592680 @default.
- W4361208647 hasConcept C198531522 @default.
- W4361208647 hasConcept C201995342 @default.
- W4361208647 hasConcept C22212356 @default.
- W4361208647 hasConcept C2780451532 @default.
- W4361208647 hasConcept C3018364605 @default.
- W4361208647 hasConcept C41008148 @default.
- W4361208647 hasConcept C43617362 @default.
- W4361208647 hasConcept C76155785 @default.
- W4361208647 hasConceptScore W4361208647C110875604 @default.
- W4361208647 hasConceptScore W4361208647C127413603 @default.
- W4361208647 hasConceptScore W4361208647C136764020 @default.
- W4361208647 hasConceptScore W4361208647C185592680 @default.
- W4361208647 hasConceptScore W4361208647C198531522 @default.
- W4361208647 hasConceptScore W4361208647C201995342 @default.
- W4361208647 hasConceptScore W4361208647C22212356 @default.
- W4361208647 hasConceptScore W4361208647C2780451532 @default.
- W4361208647 hasConceptScore W4361208647C3018364605 @default.
- W4361208647 hasConceptScore W4361208647C41008148 @default.
- W4361208647 hasConceptScore W4361208647C43617362 @default.
- W4361208647 hasConceptScore W4361208647C76155785 @default.
- W4361208647 hasIssue "4" @default.
- W4361208647 hasLocation W43612086471 @default.
- W4361208647 hasOpenAccess W4361208647 @default.
- W4361208647 hasPrimaryLocation W43612086471 @default.
- W4361208647 hasRelatedWork W2081647779 @default.
- W4361208647 hasRelatedWork W2359608331 @default.
- W4361208647 hasRelatedWork W2364264865 @default.
- W4361208647 hasRelatedWork W2368877027 @default.
- W4361208647 hasRelatedWork W2372285644 @default.
- W4361208647 hasRelatedWork W2379571098 @default.
- W4361208647 hasRelatedWork W2760769657 @default.
- W4361208647 hasRelatedWork W2950715471 @default.
- W4361208647 hasRelatedWork W4237750775 @default.
- W4361208647 hasRelatedWork W4380050070 @default.
- W4361208647 hasVolume "20" @default.
- W4361208647 isParatext "false" @default.
- W4361208647 isRetracted "false" @default.
- W4361208647 workType "article" @default.