Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361213872> ?p ?o ?g. }
- W4361213872 endingPage "962" @default.
- W4361213872 startingPage "962" @default.
- W4361213872 abstract "The implementation of time-evolution operators $U(t)$, called Hamiltonian simulation, is one of the most promising usage of quantum computers. For time-independent Hamiltonians, qubitization has recently established efficient realization of time-evolution $U(t)=e^{-iHt}$, with achieving the optimal computational resource both in time $t$ and an allowable error $varepsilon$. In contrast, those for time-dependent systems require larger cost due to the difficulty of handling time-dependency. In this paper, we establish optimal/nearly-optimal Hamiltonian simulation for generic time-dependent systems with time-periodicity, known as Floquet systems. By using a so-called Floquet-Hilbert space equipped with auxiliary states labeling Fourier indices, we develop a way to certainly obtain the target time-evolved state without relying on either time-ordered product or Dyson-series expansion. Consequently, the query complexity, which measures the cost for implementing the time-evolution, has optimal and nearly-optimal dependency respectively in time $t$ and inverse error $varepsilon$, and becomes sufficiently close to that of qubitization. Thus, our protocol tells us that, among generic time-dependent systems, time-periodic systems provides a class accessible as efficiently as time-independent systems despite the existence of time-dependency. As we also provide applications to simulation of nonequilibrium phenomena and adiabatic state preparation, our results will shed light on nonequilibrium phenomena in condensed matter physics and quantum chemistry, and quantum tasks yielding time-dependency in quantum computation." @default.
- W4361213872 created "2023-03-31" @default.
- W4361213872 creator A5055647978 @default.
- W4361213872 creator A5075770990 @default.
- W4361213872 date "2023-03-28" @default.
- W4361213872 modified "2023-09-30" @default.
- W4361213872 title "Optimal Hamiltonian simulation for time-periodic systems" @default.
- W4361213872 cites W1448382730 @default.
- W4361213872 cites W1492999010 @default.
- W4361213872 cites W1578322733 @default.
- W4361213872 cites W1871899311 @default.
- W4361213872 cites W1977159085 @default.
- W4361213872 cites W1978774199 @default.
- W4361213872 cites W1984685357 @default.
- W4361213872 cites W1986306617 @default.
- W4361213872 cites W1988696189 @default.
- W4361213872 cites W1996350481 @default.
- W4361213872 cites W2002372750 @default.
- W4361213872 cites W2008394317 @default.
- W4361213872 cites W2020581398 @default.
- W4361213872 cites W2026154948 @default.
- W4361213872 cites W2027780909 @default.
- W4361213872 cites W2033586226 @default.
- W4361213872 cites W2040792108 @default.
- W4361213872 cites W2041606052 @default.
- W4361213872 cites W2052891002 @default.
- W4361213872 cites W2064366041 @default.
- W4361213872 cites W2068728923 @default.
- W4361213872 cites W2077896911 @default.
- W4361213872 cites W2077989977 @default.
- W4361213872 cites W2087951246 @default.
- W4361213872 cites W2097174474 @default.
- W4361213872 cites W2117980155 @default.
- W4361213872 cites W2155521441 @default.
- W4361213872 cites W2169147494 @default.
- W4361213872 cites W2179731956 @default.
- W4361213872 cites W2219078926 @default.
- W4361213872 cites W2241286470 @default.
- W4361213872 cites W2267783880 @default.
- W4361213872 cites W2272806240 @default.
- W4361213872 cites W2314480200 @default.
- W4361213872 cites W2415656260 @default.
- W4361213872 cites W2564229214 @default.
- W4361213872 cites W2593381501 @default.
- W4361213872 cites W2600825956 @default.
- W4361213872 cites W2776471665 @default.
- W4361213872 cites W2799222224 @default.
- W4361213872 cites W2801305581 @default.
- W4361213872 cites W2813120584 @default.
- W4361213872 cites W2901677314 @default.
- W4361213872 cites W2964269613 @default.
- W4361213872 cites W2993901751 @default.
- W4361213872 cites W3011871152 @default.
- W4361213872 cites W3013623435 @default.
- W4361213872 cites W3093945351 @default.
- W4361213872 cites W3100969357 @default.
- W4361213872 cites W3101373235 @default.
- W4361213872 cites W3101824094 @default.
- W4361213872 cites W3102200413 @default.
- W4361213872 cites W3103810096 @default.
- W4361213872 cites W3104433882 @default.
- W4361213872 cites W3104756137 @default.
- W4361213872 cites W3105081351 @default.
- W4361213872 cites W3105391658 @default.
- W4361213872 cites W3106047133 @default.
- W4361213872 cites W3106269494 @default.
- W4361213872 cites W3120829625 @default.
- W4361213872 cites W3128324875 @default.
- W4361213872 cites W3145689608 @default.
- W4361213872 cites W3209291978 @default.
- W4361213872 cites W3216628913 @default.
- W4361213872 cites W4200164985 @default.
- W4361213872 cites W4206196235 @default.
- W4361213872 cites W4243569475 @default.
- W4361213872 cites W4297193022 @default.
- W4361213872 cites W4327942886 @default.
- W4361213872 cites W843439181 @default.
- W4361213872 cites W866678434 @default.
- W4361213872 doi "https://doi.org/10.22331/q-2023-03-28-962" @default.
- W4361213872 hasPublicationYear "2023" @default.
- W4361213872 type Work @default.
- W4361213872 citedByCount "2" @default.
- W4361213872 countsByYear W43612138722023 @default.
- W4361213872 crossrefType "journal-article" @default.
- W4361213872 hasAuthorship W4361213872A5055647978 @default.
- W4361213872 hasAuthorship W4361213872A5075770990 @default.
- W4361213872 hasBestOaLocation W43612138721 @default.
- W4361213872 hasConcept C105795698 @default.
- W4361213872 hasConcept C106553664 @default.
- W4361213872 hasConcept C11413529 @default.
- W4361213872 hasConcept C121332964 @default.
- W4361213872 hasConcept C121864883 @default.
- W4361213872 hasConcept C126255220 @default.
- W4361213872 hasConcept C130787639 @default.
- W4361213872 hasConcept C158622935 @default.
- W4361213872 hasConcept C161166931 @default.
- W4361213872 hasConcept C192353077 @default.
- W4361213872 hasConcept C2778926657 @default.