Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361217689> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4361217689 endingPage "1635" @default.
- W4361217689 startingPage "1635" @default.
- W4361217689 abstract "Early detection of brain tumors is critical to ensure successful treatment, and medical imaging is essential in this process. However, analyzing the large amount of medical data generated from various sources such as magnetic resonance imaging (MRI) has been a challenging task. In this research, we propose a method for early brain tumor segmentation using big data analysis and patch-based convolutional neural networks (PBCNNs). We utilize BraTS 2012–2018 datasets. The data is preprocessed through various steps such as profiling, cleansing, transformation, and enrichment to enhance the quality of the data. The proposed CNN model utilizes a patch-based architecture with global and local layers that allows the model to analyze different parts of the image with varying resolutions. The architecture takes multiple input modalities, such as T1, T2, T2-c, and FLAIR, to improve the accuracy of the segmentation. The performance of the proposed model is evaluated using various metrics, such as accuracy, sensitivity, specificity, Dice similarity coefficient, precision, false positive rate, and true positive rate. Our results indicate that the proposed method outperforms the existing methods and is effective in early brain tumor segmentation. The proposed method can also assist medical professionals in making accurate and timely diagnoses, and thus improve patient outcomes, which is especially critical in the case of brain tumors. This research also emphasizes the importance of big data analysis in medical imaging research and highlights the potential of PBCNN models in this field." @default.
- W4361217689 created "2023-03-31" @default.
- W4361217689 creator A5007909581 @default.
- W4361217689 creator A5009436793 @default.
- W4361217689 creator A5026865500 @default.
- W4361217689 creator A5054926386 @default.
- W4361217689 date "2023-03-28" @default.
- W4361217689 modified "2023-10-18" @default.
- W4361217689 title "Brain Tumor Segmentation Using a Patch-Based Convolutional Neural Network: A Big Data Analysis Approach" @default.
- W4361217689 cites W1524094261 @default.
- W4361217689 cites W1884191083 @default.
- W4361217689 cites W2014994637 @default.
- W4361217689 cites W2301358467 @default.
- W4361217689 cites W2302302587 @default.
- W4361217689 cites W2345010043 @default.
- W4361217689 cites W2464708700 @default.
- W4361217689 cites W2736221006 @default.
- W4361217689 cites W2788945298 @default.
- W4361217689 cites W2912884588 @default.
- W4361217689 cites W2912989244 @default.
- W4361217689 cites W2917942747 @default.
- W4361217689 cites W2953298857 @default.
- W4361217689 cites W2964227007 @default.
- W4361217689 cites W2965262659 @default.
- W4361217689 cites W2967949483 @default.
- W4361217689 cites W2984306354 @default.
- W4361217689 cites W3011959878 @default.
- W4361217689 cites W3023290769 @default.
- W4361217689 cites W3036901136 @default.
- W4361217689 cites W3043327973 @default.
- W4361217689 cites W3196811303 @default.
- W4361217689 cites W3200313969 @default.
- W4361217689 cites W3203841574 @default.
- W4361217689 cites W3209249132 @default.
- W4361217689 cites W4200004959 @default.
- W4361217689 cites W4320491045 @default.
- W4361217689 doi "https://doi.org/10.3390/math11071635" @default.
- W4361217689 hasPublicationYear "2023" @default.
- W4361217689 type Work @default.
- W4361217689 citedByCount "3" @default.
- W4361217689 countsByYear W43612176892023 @default.
- W4361217689 crossrefType "journal-article" @default.
- W4361217689 hasAuthorship W4361217689A5007909581 @default.
- W4361217689 hasAuthorship W4361217689A5009436793 @default.
- W4361217689 hasAuthorship W4361217689A5026865500 @default.
- W4361217689 hasAuthorship W4361217689A5054926386 @default.
- W4361217689 hasBestOaLocation W43612176891 @default.
- W4361217689 hasConcept C101070640 @default.
- W4361217689 hasConcept C108583219 @default.
- W4361217689 hasConcept C119857082 @default.
- W4361217689 hasConcept C124101348 @default.
- W4361217689 hasConcept C124504099 @default.
- W4361217689 hasConcept C126838900 @default.
- W4361217689 hasConcept C143409427 @default.
- W4361217689 hasConcept C153180895 @default.
- W4361217689 hasConcept C154945302 @default.
- W4361217689 hasConcept C31601959 @default.
- W4361217689 hasConcept C41008148 @default.
- W4361217689 hasConcept C534262118 @default.
- W4361217689 hasConcept C71924100 @default.
- W4361217689 hasConcept C75684735 @default.
- W4361217689 hasConcept C81363708 @default.
- W4361217689 hasConcept C89600930 @default.
- W4361217689 hasConceptScore W4361217689C101070640 @default.
- W4361217689 hasConceptScore W4361217689C108583219 @default.
- W4361217689 hasConceptScore W4361217689C119857082 @default.
- W4361217689 hasConceptScore W4361217689C124101348 @default.
- W4361217689 hasConceptScore W4361217689C124504099 @default.
- W4361217689 hasConceptScore W4361217689C126838900 @default.
- W4361217689 hasConceptScore W4361217689C143409427 @default.
- W4361217689 hasConceptScore W4361217689C153180895 @default.
- W4361217689 hasConceptScore W4361217689C154945302 @default.
- W4361217689 hasConceptScore W4361217689C31601959 @default.
- W4361217689 hasConceptScore W4361217689C41008148 @default.
- W4361217689 hasConceptScore W4361217689C534262118 @default.
- W4361217689 hasConceptScore W4361217689C71924100 @default.
- W4361217689 hasConceptScore W4361217689C75684735 @default.
- W4361217689 hasConceptScore W4361217689C81363708 @default.
- W4361217689 hasConceptScore W4361217689C89600930 @default.
- W4361217689 hasIssue "7" @default.
- W4361217689 hasLocation W43612176891 @default.
- W4361217689 hasOpenAccess W4361217689 @default.
- W4361217689 hasPrimaryLocation W43612176891 @default.
- W4361217689 hasRelatedWork W2724710774 @default.
- W4361217689 hasRelatedWork W2731899572 @default.
- W4361217689 hasRelatedWork W2795329967 @default.
- W4361217689 hasRelatedWork W3014300295 @default.
- W4361217689 hasRelatedWork W3102253946 @default.
- W4361217689 hasRelatedWork W3111570720 @default.
- W4361217689 hasRelatedWork W4281780675 @default.
- W4361217689 hasRelatedWork W4285827401 @default.
- W4361217689 hasRelatedWork W4297820521 @default.
- W4361217689 hasRelatedWork W4309637067 @default.
- W4361217689 hasVolume "11" @default.
- W4361217689 isParatext "false" @default.
- W4361217689 isRetracted "false" @default.
- W4361217689 workType "article" @default.