Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361219493> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4361219493 endingPage "102779" @default.
- W4361219493 startingPage "102779" @default.
- W4361219493 abstract "An increasing amount of literature raises the issue of food deserts and urban heterogeneity in larger metropolitan cores throughout North America. Specific to Canadian cities, the disparity between access to health, education, and affordable food is of growing concern. Recently, these drivers seem to be significantly linked to the propagation of COVID-19. This paper explores the spatially-explicit dynamics of food deserts in Toronto, by integrating Geographic Information Systems and machine learning to understand the clusters of food deserts. The integration of spatial analysis with self-organizing maps (SOM) offers insights on the relation between neighborhoods, geodemographic profiles and urban characteristics, and whether one might expect consequences of food insecurity given COVID-19. The paper starts out with developing a machine learning algorithm based on SOM to define meaningful clusters within the hedonic dataset. Further to this, an exploratory regression was built per cluster as to allow an exploratory spatial analysis to derive an explanatory framework for the key characteristics of socio-economic profiles within the Greater Toronto Area and impacts of SARS-CoV-2. The findings suggest that there are clear spatial profiles within the urban core of Toronto in regards to food deserts, showing a direct relation between socioeconomic characteristics and the results on environmental injustice and livability. These profiles are strongly linked with the areas of COVID-19 occurrence, and share a very similar socio-demographic profile, particularly in regards to young and lower income families. There are several food deserts currently in Toronto, Ontario. The integration of policies that involve public health and spatial decision-support, particularly when linked to machine learning to aggregate characteristics of big data, establish a multi-functional understanding of the complexity of food security. This has a direct relation with diet, environment, and the opportunity to enhance subjective well-being in city cores." @default.
- W4361219493 created "2023-03-31" @default.
- W4361219493 creator A5053763560 @default.
- W4361219493 creator A5054215767 @default.
- W4361219493 creator A5079873407 @default.
- W4361219493 creator A5084167587 @default.
- W4361219493 creator A5006800427 @default.
- W4361219493 date "2023-05-01" @default.
- W4361219493 modified "2023-09-29" @default.
- W4361219493 title "Urban habitats and food insecurity: Lessons learned throughout a pandemic" @default.
- W4361219493 cites W1923105216 @default.
- W4361219493 cites W1966823031 @default.
- W4361219493 cites W1989560460 @default.
- W4361219493 cites W2002735931 @default.
- W4361219493 cites W2003771400 @default.
- W4361219493 cites W2005415542 @default.
- W4361219493 cites W2032427440 @default.
- W4361219493 cites W2045879595 @default.
- W4361219493 cites W2094106677 @default.
- W4361219493 cites W2112490573 @default.
- W4361219493 cites W2131795981 @default.
- W4361219493 cites W2132046945 @default.
- W4361219493 cites W2133059857 @default.
- W4361219493 cites W2135995144 @default.
- W4361219493 cites W2137738240 @default.
- W4361219493 cites W2176139377 @default.
- W4361219493 cites W2204586727 @default.
- W4361219493 cites W2522303200 @default.
- W4361219493 cites W2560227758 @default.
- W4361219493 cites W2607813080 @default.
- W4361219493 cites W2611569348 @default.
- W4361219493 cites W2740528709 @default.
- W4361219493 cites W2901754295 @default.
- W4361219493 cites W2954643174 @default.
- W4361219493 cites W3001314207 @default.
- W4361219493 doi "https://doi.org/10.1016/j.habitatint.2023.102779" @default.
- W4361219493 hasPublicationYear "2023" @default.
- W4361219493 type Work @default.
- W4361219493 citedByCount "0" @default.
- W4361219493 crossrefType "journal-article" @default.
- W4361219493 hasAuthorship W4361219493A5006800427 @default.
- W4361219493 hasAuthorship W4361219493A5053763560 @default.
- W4361219493 hasAuthorship W4361219493A5054215767 @default.
- W4361219493 hasAuthorship W4361219493A5079873407 @default.
- W4361219493 hasAuthorship W4361219493A5084167587 @default.
- W4361219493 hasConcept C118518473 @default.
- W4361219493 hasConcept C144024400 @default.
- W4361219493 hasConcept C147077947 @default.
- W4361219493 hasConcept C149923435 @default.
- W4361219493 hasConcept C158739034 @default.
- W4361219493 hasConcept C162324750 @default.
- W4361219493 hasConcept C166957645 @default.
- W4361219493 hasConcept C189326681 @default.
- W4361219493 hasConcept C205649164 @default.
- W4361219493 hasConcept C26271046 @default.
- W4361219493 hasConcept C2908647359 @default.
- W4361219493 hasConcept C50522688 @default.
- W4361219493 hasConcept C549605437 @default.
- W4361219493 hasConcept C74893574 @default.
- W4361219493 hasConceptScore W4361219493C118518473 @default.
- W4361219493 hasConceptScore W4361219493C144024400 @default.
- W4361219493 hasConceptScore W4361219493C147077947 @default.
- W4361219493 hasConceptScore W4361219493C149923435 @default.
- W4361219493 hasConceptScore W4361219493C158739034 @default.
- W4361219493 hasConceptScore W4361219493C162324750 @default.
- W4361219493 hasConceptScore W4361219493C166957645 @default.
- W4361219493 hasConceptScore W4361219493C189326681 @default.
- W4361219493 hasConceptScore W4361219493C205649164 @default.
- W4361219493 hasConceptScore W4361219493C26271046 @default.
- W4361219493 hasConceptScore W4361219493C2908647359 @default.
- W4361219493 hasConceptScore W4361219493C50522688 @default.
- W4361219493 hasConceptScore W4361219493C549605437 @default.
- W4361219493 hasConceptScore W4361219493C74893574 @default.
- W4361219493 hasLocation W43612194931 @default.
- W4361219493 hasOpenAccess W4361219493 @default.
- W4361219493 hasPrimaryLocation W43612194931 @default.
- W4361219493 hasRelatedWork W2013591866 @default.
- W4361219493 hasRelatedWork W2016224646 @default.
- W4361219493 hasRelatedWork W2043506868 @default.
- W4361219493 hasRelatedWork W2336075499 @default.
- W4361219493 hasRelatedWork W2377600575 @default.
- W4361219493 hasRelatedWork W2380013460 @default.
- W4361219493 hasRelatedWork W2800194244 @default.
- W4361219493 hasRelatedWork W2905217449 @default.
- W4361219493 hasRelatedWork W3212191822 @default.
- W4361219493 hasRelatedWork W623191432 @default.
- W4361219493 hasVolume "135" @default.
- W4361219493 isParatext "false" @default.
- W4361219493 isRetracted "false" @default.
- W4361219493 workType "article" @default.