Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361229197> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4361229197 abstract "Containerization allows developers to define the execution environment in which their software needs to be installed. Docker is the leading platform in this field, and developers that use it are required to write a Dockerfile for their software. Writing Dockerfiles is far from trivial, especially when the system has unusual requirements for its execution environment. Despite several tools exist to support developers in writing Dockerfiles, none of them is able to generate entire Dockerfiles from scratch given a high-level specification of the requirements of the execution environment. In this paper, we present a study in which we aim at understanding to what extent Deep Learning (DL), which has been proven successful for other coding tasks, can be used for this specific coding task. We preliminarily defined a structured natural language specification for Dockerfile requirements and a methodology that we use to automatically infer the requirements from the largest dataset of Dockerfiles currently available. We used the obtained dataset, with 670,982 instances, to train and test a Text-to-Text Transfer Transformer (T5) model, following the current state-of-the-art procedure for coding tasks, to automatically generate Dockerfiles from the structured specifications. The results of our evaluation show that T5 performs similarly to the more trivial IR-based baselines we considered. We also report the open challenges associated with the application of deep learning in the context of Dockerfile generation." @default.
- W4361229197 created "2023-03-31" @default.
- W4361229197 creator A5009727039 @default.
- W4361229197 creator A5014865546 @default.
- W4361229197 creator A5056526226 @default.
- W4361229197 creator A5069505458 @default.
- W4361229197 creator A5079406478 @default.
- W4361229197 date "2023-03-28" @default.
- W4361229197 modified "2023-10-18" @default.
- W4361229197 title "Automatically Generating Dockerfiles via Deep Learning: Challenges and Promises" @default.
- W4361229197 doi "https://doi.org/10.48550/arxiv.2303.15990" @default.
- W4361229197 hasPublicationYear "2023" @default.
- W4361229197 type Work @default.
- W4361229197 citedByCount "0" @default.
- W4361229197 crossrefType "posted-content" @default.
- W4361229197 hasAuthorship W4361229197A5009727039 @default.
- W4361229197 hasAuthorship W4361229197A5014865546 @default.
- W4361229197 hasAuthorship W4361229197A5056526226 @default.
- W4361229197 hasAuthorship W4361229197A5069505458 @default.
- W4361229197 hasAuthorship W4361229197A5079406478 @default.
- W4361229197 hasBestOaLocation W43612291971 @default.
- W4361229197 hasConcept C102780508 @default.
- W4361229197 hasConcept C105795698 @default.
- W4361229197 hasConcept C108583219 @default.
- W4361229197 hasConcept C115903868 @default.
- W4361229197 hasConcept C121332964 @default.
- W4361229197 hasConcept C150899416 @default.
- W4361229197 hasConcept C154945302 @default.
- W4361229197 hasConcept C165801399 @default.
- W4361229197 hasConcept C179518139 @default.
- W4361229197 hasConcept C199360897 @default.
- W4361229197 hasConcept C2777904410 @default.
- W4361229197 hasConcept C33923547 @default.
- W4361229197 hasConcept C41008148 @default.
- W4361229197 hasConcept C52913732 @default.
- W4361229197 hasConcept C529173508 @default.
- W4361229197 hasConcept C62520636 @default.
- W4361229197 hasConcept C66322947 @default.
- W4361229197 hasConceptScore W4361229197C102780508 @default.
- W4361229197 hasConceptScore W4361229197C105795698 @default.
- W4361229197 hasConceptScore W4361229197C108583219 @default.
- W4361229197 hasConceptScore W4361229197C115903868 @default.
- W4361229197 hasConceptScore W4361229197C121332964 @default.
- W4361229197 hasConceptScore W4361229197C150899416 @default.
- W4361229197 hasConceptScore W4361229197C154945302 @default.
- W4361229197 hasConceptScore W4361229197C165801399 @default.
- W4361229197 hasConceptScore W4361229197C179518139 @default.
- W4361229197 hasConceptScore W4361229197C199360897 @default.
- W4361229197 hasConceptScore W4361229197C2777904410 @default.
- W4361229197 hasConceptScore W4361229197C33923547 @default.
- W4361229197 hasConceptScore W4361229197C41008148 @default.
- W4361229197 hasConceptScore W4361229197C52913732 @default.
- W4361229197 hasConceptScore W4361229197C529173508 @default.
- W4361229197 hasConceptScore W4361229197C62520636 @default.
- W4361229197 hasConceptScore W4361229197C66322947 @default.
- W4361229197 hasLocation W43612291971 @default.
- W4361229197 hasOpenAccess W4361229197 @default.
- W4361229197 hasPrimaryLocation W43612291971 @default.
- W4361229197 hasRelatedWork W2889705046 @default.
- W4361229197 hasRelatedWork W2949280030 @default.
- W4361229197 hasRelatedWork W2953350812 @default.
- W4361229197 hasRelatedWork W2997709384 @default.
- W4361229197 hasRelatedWork W3091976719 @default.
- W4361229197 hasRelatedWork W3131673289 @default.
- W4361229197 hasRelatedWork W3133293092 @default.
- W4361229197 hasRelatedWork W3166467183 @default.
- W4361229197 hasRelatedWork W3189091156 @default.
- W4361229197 hasRelatedWork W3192840557 @default.
- W4361229197 isParatext "false" @default.
- W4361229197 isRetracted "false" @default.
- W4361229197 workType "article" @default.